LEVEL SETS AND COMPUTATIONAL INTELLIGENCE ALGORITHMS TO MEDICAL IMAGE ANALYSIS IN E-MEDICUS SYSTEM

Tomasz Rymarczyk

tomasz.rymarczyk@netrix.com.pl
Netrix S.A., Research and Development Center (Poland)

Abstract

In this work, there were implemented methods to analyze and segmentation medical images by using topological, statistical algorithms and artificial intelligence techniques. The solution shows the architecture of the system collecting and analyzing data. There was tried to develop an algorithm for level set method (LSM) applied to piecewise constant image segmentation. These algorithms are needed to identify arbitrary number of phases for the segmentation problem. The image segmentation refers to the process of partitioning a digital image into multiple regions. There is typically used to locate objects and boundaries in images. There was also shown an algorithm for analyzing medical images using a neural network MLP.


Keywords:

segmentation, image analysis, level set method

Argenziano G., Soyer P.H., De Giorgi V., Piccolo D.: Interactive atlas of dermatoscopy, EDRA 2000.
  Google Scholar

Balla-Arabe S., Gao X.: A Fast and Robust Level Set Method for Image Segmentation Using Fuzzy Clustering and Lattice Boltzmann Method, IEEE Trans Cybern. 43(3), 2013.
  Google Scholar

Braun R. P., Rabinovitz H. S.: Dermoscopy of pigmented skin lesions, J Am Acad Dermatol, 52, 2005, 109-121.
  Google Scholar

Gdula A., Rymarczyk T.: Application Computational Algorithms for Analysis of Dental Image, WD 2015.
  Google Scholar

Jajuga K.: Statystyczna teoria rozpoznawania obrazów, PWN, Warszawa 1990.
  Google Scholar

Johr R.H.: Dermoscopy: Alternative melanocytic algorithms-the ABCD rule of dermatoscopy, Menzies scoring method, and 7-point checklist. Clin. DermC.atol. 2002.
  Google Scholar

Kamińska J., Winciorek G.: Dermatologia cyfrowa, Cornetis 2008.
  Google Scholar

Kurzyński M.: Rozpoznawanie obiektów. Metody statystyczne, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 1997.
  Google Scholar

Li C., Kao C., Gore J.C., Ding Z.: Minimization of Region-Scalable Fitting Energy for Image Segmentation, IEEE Trans. Image Processing, vol. 17 (10), 2008, 1940-1949.
  Google Scholar

Mumford D., Shah J.: Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math., 42, 1989, 577–685.
  Google Scholar

Osher S., Fedkiw R.: Level Set Methods and Dynamic Implicit Surfaces, Springer, New York 2003.
  Google Scholar

Osher S., Sethian J.A.: Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. Journal of Computational Physics, 79, 1988, 12–49.
  Google Scholar

Ossowski S.: Sieci neuronowe do przetwarzania informacji, Politechnika Warszawska, Warszawa 2006.
  Google Scholar

Osowski S., Markiewicz T., Kruk M., Kozłowski W.: Metody sztucznej inteligencji do wspomagania diagnostyki patologii tkanek, WAT, Warszawa 2011.
  Google Scholar

Rymarczyk T.: Characterization of the shape of unknown objects by inverse numerical methods, Electrical Review, 7b/2012, 138–140.
  Google Scholar

Rymarczyk T., Osior K.: E-Medicus System for Analysis and Images Segmentation, IIPhWD 2013.
  Google Scholar

Rymarczyk T., Filipowicz S.F., Sikora J., Polakowski K.: A piecewise-constant minimal partition problem in the image reconstruction, Przegląd Elektrotechniczny, 12/2009, 141–143.
  Google Scholar

Sadowski T, Rymarczyk T.: Method for Segmentation Medical Images of Thorax and Detecting Anomalies, WD2014, 2014.
  Google Scholar

Sethian J.A.: Level Set Methods and Fast Marching Methods, Cambridge University Press, 1999.
  Google Scholar

Stąpor K.: Metody klasyfikacji obiektów w wizji komputerowej. Wydawnictwo Naukowe PWN, Warszawa 2011.
  Google Scholar

Stolz W., Braun-Falco O.: Color atlas of dermatoscopy, Blackwell Science, 1994.
  Google Scholar

Vese L. Chan T.: A new multiphase level set framework for image segmentation via the Mumford and Shah model, CAM Report 01-25, UCLA Math. Dept., 2001.
  Google Scholar

Xiong G., Zhou X., Ji L., Bradley P., Perrimon N., Wong S.: Automated Segmentation of Drosophila RNAi Fluorescence Cellular Images using Deformable Models, IEEE Transactions on Circuits and Systems, Vol. 53, No. 11, 2006, 2415–2424.
  Google Scholar

Download


Published
2017-03-03

Cited by

Rymarczyk, T. . (2017). LEVEL SETS AND COMPUTATIONAL INTELLIGENCE ALGORITHMS TO MEDICAL IMAGE ANALYSIS IN E-MEDICUS SYSTEM. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 7(1), 63–67. https://doi.org/10.5604/01.3001.0010.4585

Authors

Tomasz Rymarczyk 
tomasz.rymarczyk@netrix.com.pl
Netrix S.A., Research and Development Center Poland

Statistics

Abstract views: 187
PDF downloads: 48