ANALYSIS OF INFLUENCE OF NUMERICAL MESH DENSITY ON RESULTS OF SIMULATION OF VON KARMAN VORTEX STREET
Beata Czapla
b.czapla@doktorant.po.edu.plPolitechnika Opolska, Katedra Techniki Cieplnej i Aparatury Przemysłowej (Poland)
Mariusz Rząsa
Politechnika Opolska, Katedra Techniki Cieplnej i Aparatury Przemysłowej (Poland)
Abstract
The paper includes numerical studies of simulating the von Karman vortex street. Knowledge of the vortex street is an important consideration in the design of vortex flowmeters. One of the important elements of the numerical simulation is suitable computational mesh. The paper presents the results of numerical analysis of the effect of mesh density on the simulation result. In numerical calculations a big impact on the correctness of results has the right to prepare a model for the calculation in terms of choice of mesh density. It has been shown that the density of the mesh affects the quality of the results. However be optimum number of elements of mesh, for which further increasing of its elements does not significantly improve results of simulation. In the paper presents the optimal numerical values for the exemplary vortex generator.
Keywords:
vortex flowmeter, CFD, turbulent models, computational meshReferences
Achenbach E.: Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re = 5×105. J. Fluid Mech. 34(4)/1968, 625–639.
Google Scholar
Ansys Fluent Theory Guide 12.0, Ansys Inc., 2009.
Google Scholar
Flaga A., Błazik-Borowa E., Podgórski J.: Aerodynamika smukłych budowli i konstrukcji prętowo-ciągnionych. Wydawnictwo Politechniki Lubelskiej, Lublin 2004.
Google Scholar
Gandhi B.K., Singh S.N., Seshadri V., Singh J.: Effect of bluff body shape on vortex flow meter performance. Indian Journal of Engineering & Materials Sciences 11/2004, 378–384.
Google Scholar
Igarashi T.: Fluid flow around a bluff body used for a Karman vortex flow meter. Proc. Of International Symposium on Fluid Control and Measurement Flucome Tokyo’85, 2-6 September 1985, Tokyo, 1017–1022.
Google Scholar
Miau J.J., Liu T.W.: Vortex flowmeter designed with wall pressure measurement, Rev. Sci. Instrum. 61/1992, 2676–2681.
Google Scholar
Mustafa S., Yavuz T.: Subcritical flow around bluff bodies, A.I.A.A. J. 40/2003, 1257–1268.
Google Scholar
Nieto F., Hargreaves D.M, Owen J.S. & Hernández S.: On the applicability of 2D URANS and SST k – ω turbulence model to the fluid-structure interaction of rectangular cylinders. Engineering Applications of Computational Fluid Mechanics 9(1)/2015, 157–173.
Google Scholar
Norberg C.: Fluctuating lift on a circular cylinder: review and new measurements. J. Fluids Struct. 17/2003, 57–96.
Google Scholar
Pankanin G.: Analiza zjawisk fizycznych występujących w przepływomierzu wirowym. Przegląd Elektroniczny 9a/2011, 121–126.
Google Scholar
Pankanin G.: Przepływomierz wirowy – analiza zjawiska generacji wirów. Współczesne metody badań i wizualizacji ścieżki wirowej von Karmana. Prace naukowe. Elektronika, z. 168, OWPW, Warszawa 2009
Google Scholar
Popiel C.O., Robinson D.I., Turner J.T.: Vortex shedding from a circular cylinder with a slit and concave rear surface. Applied Scientific Resaerch 51/2015, 209.
Google Scholar
Pospolita J., Kabaciński M., Zamorowski R.: Właściwości metrologiczne i możliwości zastosowania przepływomierzy wirowych. Pomiary, Automatyka Robotyka 11/2007, 13–20.
Google Scholar
Prasad A., Williamson C.H.K.: Three-dimensional effects in turbulent bluff body wakes. J. Fluid Mech. 343/1997, 235–265.
Google Scholar
Shiba H.: A speed meter of new type. Trans. Japanese Shipbuilding 97/1960, 127–134.
Google Scholar
Singh S.N. Seshadri V., Swaroop A.: Effect of size and shape of the bluff body on Strouhal number in pipe flow, 20th National Conf on FMFP, 1993.
Google Scholar
Venugopal A., Amit Agrawal, Prabhu S.V.: Review on vortex flowmeter – Designer perspective. Sensors and Actuators A: Physical, 2011.
Google Scholar
Wahed A.K.E., Johnson M.W., Sproston J.L.: Numerical study of ovortex shedding from different shaped bluff bodies. Flow Meas. Instrum. 4/1993, 233–240.
Google Scholar
Authors
Beata Czaplab.czapla@doktorant.po.edu.pl
Politechnika Opolska, Katedra Techniki Cieplnej i Aparatury Przemysłowej Poland
Authors
Mariusz RząsaPolitechnika Opolska, Katedra Techniki Cieplnej i Aparatury Przemysłowej Poland
Statistics
Abstract views: 254PDF downloads: 211
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Mariusz Rzasa, Sławomir Pochwała, Sławomir Szymaniec, METHOD OF DETERMINING THE COP COEFFICIENT FOR A COOLING SYSTEM , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 10 No. 4 (2020)
- Adam Ilnicki, Mariusz Rząsa, ANALYSIS OF POWER LOSS IN THE LOW-SPEED PNEUMATIC ENGINE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 4 (2017)
- Mariusz Rząsa, Ewelina Podgórni, REVIEW OF METHODS OF MEASURING BASED ON OPTICAL TOMOGRAPHY APPLICABLE TO DETERMINING FLOW PARAMETERS OF GAS-LIQUID , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 1 (2017)