ANOMALIES IN MODELLING BUSINESS PROCESS
Anna Suchenia
asuchenia@pk.edu.plPolitechnika Krakowska, Wydział Inżynierii Elektrycznej i Komputerowej (Poland)
Antoni Ligęza
Akademia Górniczo-Hutnicza w Krakowie, Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej (Poland)
Abstract
In the field of business process modeling the most popular is the Business Process Modeling Notation (BPMN). BPMN is relevant from a practical point of view while at the same it offers many challenges for software developers and scientists. Specification of a BPMN diagram is relatively precise, but it is only a descriptive form presented at some abstract, graphical level. Most of the work in this area is focused on the use of the possibilities offered by BPMN notation. However, there is still no document analyzing the errors and how to detect and eliminate. The article attempts to analyze issues anomalies that may occur in the BPMN notation. The survey is based on the analysis of literature and own experience of modeling in BPMN. Analyzes allowed us to identify a few of the most common types of anomalies: syntactic anomalies, and structural anomalies.
Keywords:
BPMN, business process modeling, anomalies, syntactic anomalies, structural anomaliesReferences
Awad A., Decker G.: Lohmann N.: Diagnosing and Repairing Data Anomalies in Process Models. Springer, 2009, 5–16.
Google Scholar
Borger E., Sorensen O., Thalheim B.: On defining the behavior of OR-joins in business process models. Journal of Universal Computer Science 14/2009, 3–32.
Google Scholar
Desheng X., Kejian X., Dezheng Z., Huangsheng Z.: Model Checking the Inconsistency and Circularity in Rule-Based Expert Systems. Computer and Information Science 2009, 12–17.
Google Scholar
Dohring M., Heublein S.: Anomalies in Rule-Adapted Workflows - A Taxonomy and Solutions for vBPMN. Software Maintenance and Reengineering (CSMR) 2007, 117–126.
Google Scholar
Good e-Learning: www.blog.goodelearning.com, 2015.
Google Scholar
Hallerbach A., Bauer T., Manfred R.: Capturing Variability in Business Process Models. The Provop Approach. Journal of Software Maintenance and Evolution. Research and Practice 22/2010, 519–546.
Google Scholar
Kim G., Lee J. H., Son J. H.: Classification and Analyses of Business Process Anomalies. Communication Software and Networks 2009, 433–437.
Google Scholar
Kuhne S., Kern H., Gruhn V.: Laue R.: Business process modeling with continuous validation. Journal of Software Maintenance and Evolution. Research and Practice 22/2010, 547–566.
Google Scholar
Laue R., Awad A.: Visualization of Business Process Modeling Anti Patterns. Electronic Communications of the EASST 25/2009.
Google Scholar
Ligęza A.: BPMN a logical model and property analysis. Decision Making in Manufacturing and Services 5/2011, 57–67.
Google Scholar
Ligęza A., Nalepa G. J.: A study of methodological issues in design and development of rule-based systems: proposal of a new approach. Data Mining and Knowledge Discovery 2011, 117–137.
Google Scholar
Lin H., Zhao Z., Chen Z.: A novel graph reduction algorithm to identify structural conflicts. Proceedings of the 35th Hawaii International Conference on System Sciences 2002, 289.
Google Scholar
Ling H., Bo Z. J.: Research on workflow process structure verification. e-Business Engineering 2005, 158–165.
Google Scholar
Liu R., Kumar A.: An Analysis and Taxonomy of Unstructured Workflows. Springer 2005, 268–284.
Google Scholar
Lohmann N., Wolf K.: How to Implement a Theory of Correctness in the Area of Business Processes and Services. Springer 2010, 61–77.
Google Scholar
Mendling J., Verbee E., Dongen B., Aalst W., Neumann G.: Detection and Prediction of Errors in EPCs of the SAP Reference Model. Data & Knowledge Engineering 64(1)/2007, 312–329.
Google Scholar
Mroczek A., Ligęza A.: A Note on BPMN Analysis. Towards a Taxonomy of Selected Potential Anomalies. Proceedings of the 2014 Fedcsis, 2014, 1097–1102.
Google Scholar
Negnevitsky M.: Artificial Intelligence. A Guide to Intelligent Systems. Addison-Wesley, England, 2002.
Google Scholar
Olkhovich L.: Semi-Automatic Business Process Performance Optimization Based On Redundant Control Flow Detection. AICT-ICIW, 2006, 146–146.
Google Scholar
OMG: Business Process Model and Notation. http://www.omg.org/spec/BPMN/2.0/PDF/, 2011.
Google Scholar
OMG: www.bpmn.org, 2015.
Google Scholar
Suchenia A., Ligęza A.: Event anomalies in modeling with BPMN. IJCTA, 6(5)/ 2015, 789–797.
Google Scholar
Trcka N., Sidorova N., Aalst W. M. P.: Data-Flow Anti-patterns. Discovering Data-Flow Errors in Workflows. Springer, 2009, 425–439.
Google Scholar
Aalst W. M. P., Hirnschall A., Verbeek H.: An Alternative Way to Analyze Workflow Graph. Springer, 2002, 535–552.
Google Scholar
White S. A.: Introduction to BPMN. IBM Corporation, 2004.
Google Scholar
White S. A.: Process Modeling Notations and Workflow Patterns. IBM Corporation, 2004.
Google Scholar
Zaidi A. K., Levis A. H.: Validation and verification of decision making rules. Automatica 33/1997, 155–169.
Google Scholar
Zubrow D.: IEEE Standard Classification for Software Anomalies. IEEE Computer Society, 2009.
Google Scholar
Authors
Anna Sucheniaasuchenia@pk.edu.pl
Politechnika Krakowska, Wydział Inżynierii Elektrycznej i Komputerowej Poland
Authors
Antoni LigęzaAkademia Górniczo-Hutnicza w Krakowie, Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Poland
Statistics
Abstract views: 369PDF downloads: 363
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.