NUMERICAL COMPUTATIONS OF THE FRACTIONAL DERIVATIVE IN IVPS, EXAMPLES IN MATLAB AND MATHEMATICA


Abstract

The paper concerns a numerical method that deals with the computations of the fractional derivative in Caputo and Riemann-Liouville definitions. The method can be applied in time stepping processes of initial value problems. The name of the method is SubIval, which is an acronym of its previous name – the subinterval-based method. Its application in solving systems of fractional order state equations is presented. The method has been implemented into an ActiveX DLL. Exemplary MATLAB and Mathematica codes are given, which provide guidance on how the DLL can be used.


Keywords

fractional calculus; numerical analysis; circuit analysis; integro-differential equations

Abdeljawad T.: On Riemann and Caputo fractional differences. Computers and Mathematics with Applications 62/2011, 1602–1611.

Arikoglu A., Ozkol I.: Solution of fractional integro-differential equations by using fractional differential transform method. Chaos, Solitons & Fractals 40(2)/2007, 521–529.

Brociek R., Słota D., Wituła R.: Reconstruction of the Thermal Conductivity Coefficient in the Time Fractional Diffusion Equation. Advances in Modelling and Control of Non-integer-Order Systems 2016, 239–247.

Caputo M.: Linear models of dissipation whose Q is almost frequency independent – II. Geophysical Journal International 13(5)/1967, 529–539.

Cui M.: Compact finite difference method for the fractional diffusion equation. Journal of Computational Physics 228/2009, 7792–7804.

Ducharne B., Sebald G., Guyomar D., Litak G.: Dynamics of magnetic field penetration into soft ferromagnets. Journal of Applied Physics 117/2015, 243907.

Huang L., Xian-Fang L., Zhao Y., Duan X.Y.: Approximate solution of fractional integro-differential equations by Taylor expansion method. Computers and Mathematics with Applications 62/2011, 1127–1134.

Jakubowska A., Walczak J.: Analysis of the Transient State in a Series Circuit of the Class RLC. Circuits, Systems and Signal Processing 35/2016, 1831–1853.

Katugampola U.N.: A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6(4)/2014, 1–15.

Kawala-Janik A., Podpora M., Gardecki A., Czuczwara W., Baranowski J., Bauer W.: Game controller based on biomedical signals. Methods and Models in Automation and Robotics (MMAR) 2015, 20th International Conference, 934–939.

Klamka, J., Czornik, A., Niezabitowski, M., Babiarz, A.: Controllability and minimum energy control of linear fractional discrete-time infinite-dimensional systems. Control & Automation (ICCA) 2014, 11th IEEE Conference, 1210–1214.

Lubich C.: Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. Math. Comput. 45/1985, 463–469.

Momani S., Noor M.A: Numerical methods for fourth order fractional integro-differential equations. Appl. Math. Comput. 182/2006, 754–760.

Munkhammar J.D.: Riemann-Liouville fractional derivatives and the Taylor-Riemann series. UUDM Project Report 7/2004, 1–18.

New MATLAB External Interfacing Features in 2009a. MathWorks.http://www.mathworks.com/videos/new-external-interfacing-features-in-r2009a-101547.html (available 15.06.2016).

Ostalczyk P. W., Duch P., Brzeziński D. W., Sankowski D.: Order Functions Selection in the Variable-, Fractional-Order PID Controller. Advances in Modelling and Control of Non-integer-Order Systems 2014, 159–170.

Rawashdeh E.A.: Numerical solution of fractional integro-differential equations by collocation method. Applied Mathematics and Computation 176/2006, 1–6.

Saeedi H., Mohseni Moghadam M.: Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS wavelets. Commun. Nonlinear Sci. Numer. Simulat. 16/2011, 1216–1226.

Schäfer I., Krüger K.: Modelling of lossy coils using fractional derivatives. Phys. D: Appl. Phys. 41/2008, 1–8.

Skruch P., Mitkowski W.: Fractional-order models of the ultracapacitors. Advances in the Theory and Applications of Non-Integer Order Systems. Springer International Publishing 2013, 281–293.

Sowa M.: A subinterval-based method for circuits with fractional order elements. Bull. Pol. Ac.: Tech. 62(3)/2014, 449–454.

Włodarczyk M., Zawadzki A.: RLC circuits in aspect of positive fractional derivatives. Scientific Works of the Silesian University of Technology: Electrical Engineering 1/2011, 75–88.

Download

Published : 2017-09-30


Sowa, M. (2017). NUMERICAL COMPUTATIONS OF THE FRACTIONAL DERIVATIVE IN IVPS, EXAMPLES IN MATLAB AND MATHEMATICA. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 7(3), 19-22. https://doi.org/10.5604/01.3001.0010.5208

Marcin Sowa  marcin.sowa@polsl.pl
Silesian University of Technology, Faculty of Electrical Engineering, Institute of Electrical Engineering and Computer Science  Poland