K-MEANS CLUSTERING IN TEXTURED IMAGE: EXAMPLE OF LAMELLAR MICROSTRUCTURE IN TITANIUM ALLOYS

Ranya Al Darwich

raldarwich@kis.p.lodz.pl
Lodz University of Technology, Institute of Applied Computer Science (Poland)

Laurent Babout


Lodz University of Technology, Institute of Applied Computer Science (Poland)

Krzysztof Strzecha


Lodz University of Technology, Institute of Applied Computer Science (Poland)

Abstract

This paper presents an implementation of the k-means clustering method, to segment cross sections of X-ray micro tomographic images of lamellar Titanium alloys. It proposes an approach for estimating the optimal number of clusters by analyzing the histogram of the local orientation map of the image and the choice of the cluster centroids used to initialize k-means. This is compared with the classical method considering random coordinates of the clusters.


Keywords:

k-means clustering, oriented textured, number of clusters, X-ray tomography

Al Darwich R., Babout L.: Optimization of 3D Local Orientation Map Calculation in the Matlab Framework. IAPGOŚ 2/2015, 22–24.
  Google Scholar

Babout L., Jopek Ł., Janaszewski M.: A New Directional Filter Bank for 3D Texture Segmentation: Application to Lamellar Microstructure in Titanium Alloys. MVA 2013, 419–422.
  Google Scholar

Babout L., Jopek L., Preuss M.: 3D characterization of trans- and inter-lamellar fatigue crack in (α+β) Ti alloy. Materials Characterization, 98/2014, 130–139.
  Google Scholar

Bijnen E.J.: Cluster analysis. Tilburg University Press, Netherlands, 1973.
  Google Scholar

Calinski T., Harabasz J.: A dendrite method for cluster analysis. Communications in Statistics, 3/1974, 1–27.
  Google Scholar

Comaniciu D., Meer P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24/2002, 603–619.
  Google Scholar

Chandler D.: The norm of the Schur product operation. Numerische Mathematik 4.1, 1962, 343–344.
  Google Scholar

Duda R.O., Hart P.E.: Pattern Classification and Scene Analysis. Wiley, New York, 1973.
  Google Scholar

Jeulin D., Moreaud M.: Segmentation of 2D and 3D textures from estimates of the local orientation. Image Anal Stereo, 27/2008, 183–192.
  Google Scholar

Milligan G.W., Cooper M.C.: An examination of procedures for determining the number of clusters in a data set. 1985, 159–179.
  Google Scholar

Yan M.: Methods of Determining the Number of Clusters in a Data Set and a New Clustering Criterion. Blacksburg, Virginia 2005.
  Google Scholar

Download


Published
2019-09-30

Cited by

Al Darwich, R., Babout, L. ., & Strzecha, K. . (2019). K-MEANS CLUSTERING IN TEXTURED IMAGE: EXAMPLE OF LAMELLAR MICROSTRUCTURE IN TITANIUM ALLOYS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 7(3), 43–46. https://doi.org/10.5604/01.3001.0010.5213

Authors

Ranya Al Darwich 
raldarwich@kis.p.lodz.pl
Lodz University of Technology, Institute of Applied Computer Science Poland

Authors

Laurent Babout 

Lodz University of Technology, Institute of Applied Computer Science Poland

Authors

Krzysztof Strzecha 

Lodz University of Technology, Institute of Applied Computer Science Poland

Statistics

Abstract views: 212
PDF downloads: 70