ALTERNATIVE TERMINATION CRITERION FOR K-SPECIFIED CRISP DATA CLUSTERING ALGORITHMS


Abstract

In this paper the analysis of k-specified (namely k-means) crisp data partitioning pre-clustering algorithm’s termination criterion performance is described. The results have been analyzed using the clustering validity indices. Termination criterion allows analyzing data with any number of clusters. Moreover, introduced criterion in contrast to the known validity indices enables to analyze data that make up one cluster.


Keywords

pre-clustering algorithm; internal validity measures

Charrad M., Ghazzali N., Boiteau V., Niknafs A.: NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. Journal of Statistic Software, 61(6), 2014, 1–36.

Davies D.L., Bouldin D.W.: A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1, no. 2, 1979, 224–227.

Desgraupes B.: Clustering indices. University Paris Ouest, Lab Modal’X, 2013.

Dunn J.: Well separated clusters and optimal fuzzy partitions. Journal of Cybernetics 4, 1974, 95–104.

Fraley C., Raftery A.E.: How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis. The Computer Journal, 41(8), 1998, 578–588.

Gini, C.: Variabilitа e mutabilitа Reprinted in Memorie di metodologica statistica (Ed. Pizetti E, Salvemini, T). Rome: Libreria Eredi Virgilio Veschi, 1912, Bologna: Tipogr. Di P. Cuppini.

Halkidi M., Batistakis Y., Vazirgiannis M.: On clustering validation techniques. J. Intell. Inf. Syst., 17(2-3), 2001, 107–145.

Jung Y., Park H., Du D-Z., Drake B.L.: A Decision Criterion for the Optimal Number of Clusters in Hierarchical Clustering. Journal of Global Optimization, 25(1), 2003, 91–111

Ketchen Jr. Dj, Shook Cl.: The Application Of Cluster Analysis In Strategic Management Research: An Analysis And Critique, Strategic Management Journal, 17(6), 1996, 441–458.

McCallum A., Nigam K., Ungar L.H.: Efficient Clustering of High Dimensional Data Sets with Application to Reference Matching, Sixth ACM SIGKDD international conference on Knowledge discovery and data mining, 2000.

Mosorov V., Panskyi T., Biedron S.: Development of a stopping rule of clustering performance by using the connected acyclic graph. Eastern-European Journal of Enterprise Technologies, 5, 9(77), 2015, 24–30.

Mosorov V., Tomczak L.: Image Texture Defect Detection Method UsingFuzzy C-Means Clustering for Visual Inspection Systems. Arabian Journal for Science and Engineering, 39(4), 2014, 3013–3022.

RapidMiner GmbH: Cluster distance performance – RapidMiner documentation. http://docs.rapidminer.com/studio/operators/validation/performance/segmentation/cluster_distance_performance.html

Rousseeuw P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20, 1987, 53–65.

Sheikholeslami C., Chatterjee S., Zhang A.: WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Database. The International Journal on Very Large Data Bases, 8(3-4), 2000, 289–304.

Theodoridis S., Koutroubas K.: Pattern Recognition 4th Edition, Academic Press, 2008.

Download

Published : 2017-09-30


Mosorov, V., Panskyi, T., & Biedron, S. (2017). ALTERNATIVE TERMINATION CRITERION FOR K-SPECIFIED CRISP DATA CLUSTERING ALGORITHMS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 7(3), 56-59. https://doi.org/10.5604/01.3001.0010.5216

Volodymyr Mosorov  w.mosorow@kis.p.lodz.pl
Lodz University of Technology, Institute of Applied Computer Science  Poland
Taras Panskyi 
Lodz University of Technology, Institute of Applied Computer Science  Poland
Sebastian Biedron 
Lodz University of Technology, Institute of Applied Computer Science  Poland