ALTERNATIVE TERMINATION CRITERION FOR K-SPECIFIED CRISP DATA CLUSTERING ALGORITHMS
Article Sidebar
Open full text
Issue Vol. 7 No. 3 (2017)
-
CLASSIFICATION OF THE FUNCTIONALITY AND THE SCHEMES OF THE ACOUSTIC EMISSION SOURCES LOCALIZATION
Volodimir Marasanov , Artem Sharko5-7
-
A METHOD OF COMPARATIVE EVALUATION OF CONTROL SYSTEMS BY THE SET OF PERFORMANCE MEASURES
Volodymyr Drevetskyi, Ivan Kovela, Vitalii Kutia8-10
-
NUMERICAL ASPECTS OF THE SECONDARY MAGNETIC FIELD MAPPING IN MAGNETIC INDUCTION TOMOGRAPHY
Beata Szuflitowska, Marcin Ziolkowski, Krzysztof Stawicki11-14
-
INTO THE FAST TOMOGRAPHIC POSTPROCESSING IN TOKAMAKS
Rafał Krawczyk, Piotr Kolasiński, Paweł Linczuk, Wojciech Zabołotny, Krzysztof Poźniak, Paweł Zienkiewicz, Ryszard Romaniuk, Andrzej Wojeński, Grzegorz Kasprowicz, Tomasz Czarski, Maryna Chernyshova15-18
-
NUMERICAL COMPUTATIONS OF THE FRACTIONAL DERIVATIVE IN IVPS, EXAMPLES IN MATLAB AND MATHEMATICA
Marcin Sowa19-22
-
SIMULATION AND COMPARISON OF SELECTED FAST CHARGER TOPOLOGIES
Dariusz Zieliński, Mikhail Tokovarov23-28
-
OPTIMISATION ANALYSIS OF TRANSACT-SQL QUERIES BASED ON INDEXES
Dominika Hodun, Maria Skublewska-Paszkowska29-32
-
COMPARISON OF PROGRAMMING LANGUAGES ON THE IOS PLATFORM IN TERMS OF PERFORMANCE
Kamil Gut, Maria Skublewska-Paszkowska, Edyta Łukasik, Jakub Smołka33-36
-
A METHOD FOR VISUALIZATION OF 3D MOTION DATA USING A MOBILE DEVICE
Michał Oseńko, Jakub Smołka, Maria Skublewska-Paszkowska, Edyta Łukasik37-42
-
K-MEANS CLUSTERING IN TEXTURED IMAGE: EXAMPLE OF LAMELLAR MICROSTRUCTURE IN TITANIUM ALLOYS
Ranya Al Darwich, Laurent Babout, Krzysztof Strzecha43-46
-
APPLYING A Q-GRAM BASED MULTIPLE STRING MATCHING ALGORITHM FOR APPROXIMATE MATCHING
Robert Susik47-50
-
WEB SERVER LATENCY REDUCTION STUDY
Fatma Mbarek, Volodymyr Mosorov, Rafał Wojciechowski51-55
-
ALTERNATIVE TERMINATION CRITERION FOR K-SPECIFIED CRISP DATA CLUSTERING ALGORITHMS
Volodymyr Mosorov, Taras Panskyi, Sebastian Biedron56-59
-
THE DEPENDENCE BETWEEN THE NUMBER OF ROUNDS AND IMPLEMENTED NODES IN LEACH ROUTING PROTOCOL-BASED SENSOR NETWORKS
Volodymyr Mosorov, Sebastian Biedron, Taras Panskyi60-63
-
MOBILE APPLICATION SUPPORTING DOPPLER ULTRASOUND EXAMINATION
Michał Michalski, Marcin Bąkała, Rafał Wojciechowski64-67
-
ANALYSIS OF SKIN DISEASES USING MAPPING COLOR SPACES
Marcin Wyczechowski, Łukasz Wąs , Łukasz Pietrzak68-71
-
ARTIFICIAL NEURAL NETWORKS AS A MOTORICAL ASSOCIATIVE MEMORY FOR HUMANOID ROBOT HAND
Paweł Olszewski, Wiesław Andrzej Kamiński72-77
-
THE INTENSITY OF DAYLIGHT IN SCHOOL BUILDING
Sławomir Sowa78-81
-
POWER BALANCE AND HOLONOMICITY OF SWITCHED RELUCTANCE MOTOR
Mirosław Wciślik, Karol Suchenia82-85
-
MODIFIED METHOD OF INTRODUCING THRESHOLDING FUNCTIONS IN MODELS OF RELATIONAL FUZZY COGNITIVE MAPS
Grzegorz Słoń86-89
-
ECONOMIC AND PRACTICAL ASPECTS OF USE OF AIR SOURCE HEAT PUMPS
Waldemar Nycz, Ryszard Goleman90-93
-
IMPACT OF THE REFRIGERANT SELECTION ON THE COLD STORAGE POSSIBILITIES IN A THERMAL ENERGY ACCUMULATOR OF AN URBAN BUS
Michał Aftyka94-98
-
USING NEURAL NETWORKS AND DEEP LEARNING ALGORITHMS IN ELECTRICAL IMPEDANCE TOMOGRAPHY
Grzegorz Kłosowski, Tomasz Rymarczyk99-102
-
THE ANALYSIS OF SENSORY PLATFORM FOR USE IN THE INTERNET OF THINGS
Tomasz Zieliński103-106
Archives
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
-
Vol. 8 No. 4
2018-12-16 16
-
Vol. 8 No. 3
2018-09-25 16
-
Vol. 8 No. 2
2018-05-30 18
-
Vol. 8 No. 1
2018-02-28 18
-
Vol. 7 No. 4
2017-12-21 23
-
Vol. 7 No. 3
2017-09-30 24
-
Vol. 7 No. 2
2017-06-30 27
-
Vol. 7 No. 1
2017-03-03 33
-
Vol. 6 No. 4
2016-12-22 16
-
Vol. 6 No. 3
2016-08-08 18
-
Vol. 6 No. 2
2016-05-10 16
-
Vol. 6 No. 1
2016-02-04 16
-
Vol. 5 No. 4
2015-10-28 19
-
Vol. 5 No. 3
2015-09-02 17
-
Vol. 5 No. 2
2015-06-30 15
-
Vol. 5 No. 1
2015-03-31 18
Main Article Content
DOI
Authors
Abstract
In this paper the analysis of k-specified (namely k-means) crisp data partitioning pre-clustering algorithm’s termination criterion performance is described. The results have been analyzed using the clustering validity indices. Termination criterion allows analyzing data with any number of clusters. Moreover, introduced criterion in contrast to the known validity indices enables to analyze data that make up one cluster.
Keywords:
References
Charrad M., Ghazzali N., Boiteau V., Niknafs A.: NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. Journal of Statistic Software, 61(6), 2014, 1–36.
Davies D.L., Bouldin D.W.: A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1, no. 2, 1979, 224–227.
Desgraupes B.: Clustering indices. University Paris Ouest, Lab Modal’X, 2013.
Dunn J.: Well separated clusters and optimal fuzzy partitions. Journal of Cybernetics 4, 1974, 95–104.
Fraley C., Raftery A.E.: How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis. The Computer Journal, 41(8), 1998, 578–588.
Gini, C.: Variabilitа e mutabilitа Reprinted in Memorie di metodologica statistica (Ed. Pizetti E, Salvemini, T). Rome: Libreria Eredi Virgilio Veschi, 1912, Bologna: Tipogr. Di P. Cuppini.
Halkidi M., Batistakis Y., Vazirgiannis M.: On clustering validation techniques. J. Intell. Inf. Syst., 17(2-3), 2001, 107–145.
Jung Y., Park H., Du D-Z., Drake B.L.: A Decision Criterion for the Optimal Number of Clusters in Hierarchical Clustering. Journal of Global Optimization, 25(1), 2003, 91–111
Ketchen Jr. Dj, Shook Cl.: The Application Of Cluster Analysis In Strategic Management Research: An Analysis And Critique, Strategic Management Journal, 17(6), 1996, 441–458.
McCallum A., Nigam K., Ungar L.H.: Efficient Clustering of High Dimensional Data Sets with Application to Reference Matching, Sixth ACM SIGKDD international conference on Knowledge discovery and data mining, 2000.
Mosorov V., Panskyi T., Biedron S.: Development of a stopping rule of clustering performance by using the connected acyclic graph. Eastern-European Journal of Enterprise Technologies, 5, 9(77), 2015, 24–30.
Mosorov V., Tomczak L.: Image Texture Defect Detection Method UsingFuzzy C-Means Clustering for Visual Inspection Systems. Arabian Journal for Science and Engineering, 39(4), 2014, 3013–3022.
RapidMiner GmbH: Cluster distance performance – RapidMiner documentation. http://docs.rapidminer.com/studio/operators/validation/performance/segmentation/cluster_distance_performance.html
Rousseeuw P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20, 1987, 53–65.
Sheikholeslami C., Chatterjee S., Zhang A.: WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Database. The International Journal on Very Large Data Bases, 8(3-4), 2000, 289–304.
Theodoridis S., Koutroubas K.: Pattern Recognition 4th Edition, Academic Press, 2008.
Article Details
Abstract views: 332
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
