DATA REDUCTION VERSUS FEATURE SELECTION IN APPLICATION OF DAILY MAXIMUM POWER LOAD FORECASTING
Article Sidebar
Open full text
Issue Vol. 3 No. 2 (2013)
-
OVERVIEW OF METHODS FOR SYNCHRONIZING WITH THE POWER GIRD (PLL) FOR POWER CONVERTERS
Piotr Lipnicki5-8
-
DATA REDUCTION VERSUS FEATURE SELECTION IN APPLICATION OF DAILY MAXIMUM POWER LOAD FORECASTING
Krzysztof Siwek9-12
-
MAGNETIC THERAPY: REMOTE CONTROLLING MICROPROCESSOR SYSTEM FOR MAGNETOTHERAPY
Katarzyna Biernat, Alicja Idziaszek-Gonzalez, Konrad Nita, Stefan Wójtowicz13-17
-
DESIGN OF 7-BIT LOW-POWER, LOW AREA A/D CONVERTER IN SUBMICRON PROCESS FOR MULTICHANNEL SYSTEMS
Piotr Otfinowski, Piotr Kmon, Rafał Kłeczek18-21
-
AN INTEGRATED RISK INFORMED DECISION MAKING IN THE NUCLEAR INDUSTRY
Mieczysław Józef Borysiewicz, Karol Kowal, Piotr Prysiński, Marcin Dąbrowski22-34
-
ELEMENTS OF AUTOMATIC CONTROL OF HYDRODYNAMIC SYSTEMS
Voronin Anatoli Mikhailovich, Bekmurza Ajtchanov, Janusz Partyka, Aldibekova Aitkul35-36
-
AUGMENTED REALITY – THE WAY TO USING ADVANCED TECHNOLOGY IN NORMAL LIFE
Maciej Laskowski, Damian Rawski, Przemysław Szadura37-40
-
INDUCTANCE CALCULATION CONSIDERING MAGNETIC SATURATION OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MACHINES
Rafał Piotuch41-44
-
EXTENDED KALMAN FILTER AS A FULL STATE OBSERVER IN APPLICATION OF THE INERTIA WHEEL PENDULUM
Jarosław Gośliński, Adam Owczarkowski45-48
Archives
-
Vol. 7 No. 4
2017-12-21 23
-
Vol. 7 No. 3
2017-09-30 24
-
Vol. 7 No. 2
2017-06-30 27
-
Vol. 7 No. 1
2017-03-03 33
-
Vol. 6 No. 4
2016-12-22 16
-
Vol. 6 No. 3
2016-08-08 18
-
Vol. 6 No. 2
2016-05-10 16
-
Vol. 6 No. 1
2016-02-04 16
-
Vol. 5 No. 4
2015-10-28 19
-
Vol. 5 No. 3
2015-09-02 17
-
Vol. 5 No. 2
2015-06-30 15
-
Vol. 5 No. 1
2015-03-31 18
-
Vol. 4 No. 4
2014-12-09 29
-
Vol. 4 No. 3
2014-09-26 22
-
Vol. 4 No. 2
2014-06-18 21
-
Vol. 4 No. 1
2014-03-12 19
-
Vol. 3 No. 4
2013-12-27 20
-
Vol. 3 No. 3
2013-07-24 13
-
Vol. 3 No. 2
2013-05-16 9
-
Vol. 3 No. 1
2013-02-14 11
Main Article Content
DOI
Authors
Abstract
Load forecasting task of small energetic region is a difficult problem due to high variability of power consumption. The accurate forecast of the power in the next hours is very important from the economic point of view. The most important problems in prediction are the choice of predictor and selection of features. Two methods of features selection was presented – simple selection using of genetic algorithm and dimensionality reduction methods for creating new features from many available measured data. As a predictor the Support Vector Machine working in regression mode (SVR) was chosen. The load forecasting results with SVR are presented and discussed.
Keywords:
References
Ashlock D.: Evolutionary Computation for Modeling and Optimization. Berlin, Germany: Springer-Verlag, 2006.
Fodor I.: A Survey of Dimension Reduction Techniques. Raport techniczny, 2002. DOI: https://doi.org/10.2172/15002155
Gill P., Murray W., Wright M.: Practical optimization. Academic Press, London 1981.
Goldberg D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA: Addison-Wesley, 1989.
Jackson J.E.: User guide to principal components. Wiley, NY, 1991. DOI: https://doi.org/10.1002/0471725331
Osowski S., Siwek K., Świderski B., Mycka Ł.: Prediction of power consumption for small power region using indexing approach and neural network. Lecture Notes on Computer Science, LNCS-6352, 2010, str. 54-59. DOI: https://doi.org/10.1007/978-3-642-15819-3_8
Osowski S., Siwek K.: Regularization of neural networks for load forecasting in power system. IEE Proc. GTD, 149, 2002, 340-345. DOI: https://doi.org/10.1049/ip-gtd:20020194
Sammon J.W.: A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, No. 18, 1969, str. 401–409. DOI: https://doi.org/10.1109/T-C.1969.222678
Siwek K., Osowski S., Świderski B.: Trend elimination of time series of 24-hour load demand in the power system and its application in power forecasting. Przegląd Elektrotechniczny, vol. 87, No 3, 2011, str. 249-253.
Schölkopf B., Smola A.: Learning with kernels. MIT Press, Cambridge MA, 2002.
Vapnik V.: Statistical learning theory. Wiley, NY, 1998.
Van der Maaten L., Hinton G.: Visualizing Data using t-SNE, Journal of Machine Learning Research, Vol. 9, 2008, str. 2579-2605.
Van der Maaten L., Postma, E.: Dimensionality reduction: a comparative review. 2009, int. report TiCC TR 2009-005.
Article Details
Abstract views: 241
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
