IMAGE ANALYSIS METHODS – ANALYSIS OF MAMMOGRAPHIC IMAGE BASED ON TEXTURAL FEATURES
Article Sidebar
Open full text
Issue Vol. 3 No. 4 (2013)
-
HYBRID FINITE ELEMENT METHOD IN MODELING OF MACHINE TOOLS KCI 210/280 NM
Janusz Grzywocz3-6
-
ENHANCEMENT OF LOW-DOSE CT SCANS
Tomasz Węgliński, Anna Fabijańska7-9
-
IMAGE ANALYSIS METHODS – ANALYSIS OF MAMMOGRAPHIC IMAGE BASED ON TEXTURAL FEATURES
Jagoda Lazarek10-13
-
COMPARISION OF SELECTED FLAME AREA DETECTION METHODS IN VISION DIAGNOSTIC SYSTEM
Daniel Sawicki, Andrzej Kotyra14-17
-
THE DESIGN OF READOUT FRONT-END ELECTRONICS FOR TIME AND ENERGY MEASUREMENTS FOR SEMICONDUCTOR STRIP DETECTORS
Rafał Kłeczek18-21
-
THE ELECTRICAL CHARACTERISTICS OF A CATENARY SYSTEM IN ELECTRIC RAIL VEHICLES, THE CALCULATION OF TRACTION LOAD AND SHORT – CIRCUIT CURRENTS
Włodzimierz Kruczek22-25
-
DEVELOPMENT OF A SCENARIO-BASED PROJECT MANAGEMENT SYSTEM CONSTRUCTION IN ENTERPRISES WITH THE FUNCTIONAL ORGANIZATIONAL STRUCTURE
Olexandr Koval, Valeriy Kuzminykh, Maxim Voronko, Dmitriy Khaustov26-30
-
ESTIMATION OF THE SHAPE OF THE HYSTERESIS LOOP IN THE DEFORMATION OF CURRENT AND VOLTAGE OF THE TRANSFORMER
Wiesław Brociek, Robert Wilanowicz31-34
-
ARCHITECTURE OF A SERVER APPLICATION FOR USE IN ENVIRONMENTAL PATIENT MONITORING
Wojciech Surtel, Marcin Maciejewski, Rafał Różalski35-37
-
A MODEL OF A MOBILE ANDROID APPLICATION FOR ENVIRONMENTAL PATIENT MONITORING
Wojciech Surtel, Marcin Maciejewski, Michał Cieślar38-40
-
OPTIMIZATION OF AFFILIATION DETERMINATION OF GEOPOINTS TO LIMITED AREAS ALGORITHMS FOR THE USE OF THE OPENSTREETMAP PROJECT
Rafał Jachowicz, Dominik Sankowski41-44
-
MAGNETIC FIELD IN RECTANGULAR BUS-BARS OF FINITE LENGTH
Tomasz Szczegielniak, Zygmunt Piątek, Dariusz Kusiak45-48
-
ANALYSIS OF INSULATION TRANSFORMERS SYSTEM RISKS FROM SWITCHING OVERVOLTAGES
Piotr Pająk49-52
-
WEB APPLICATION DEVELOPMENT USING THE PEAR LIBRARY
Beata Pańczyk, Michał Duszyk53-58
-
USING OF NUMERICAL METHODS FOR CALCULATION THE EQUATION FOR CLUSTERS CONCENTRATIONS IN GASEOUS MATERIALS
Alexey Bublikov, Natalia Denisova, Tamara Segeda59-62
-
ANALYSIS OF FRACTIONAL ORDER PIλDμ POWER CONTROL OF A NUCLEAR REACTOR
Bartosz Puchalski, Kazimierz Duzinkiewicz, Tomasz Rutkowski63-68
-
COMBINED CLONAL NEGATIVE SELECTION ALGORITHM FOR DIAGNOSTICS OF COMBUSTION IN INDIVIDUAL PC BURNER
Andrzej Smolarz, Volodymyr Lytvynenko, Olga Kozhukhovskaya, Konrad Gromaszek69-73
-
DETERMINATION OF ELECTROMAGNETIC RADIATION EMITTED BY TELECOMMUNICATION EQUIPMENT OF TRANSMISSION CENTERS
Oleksandr Naumchuk74-76
-
DESIGN OF DYNAMIC STRUCTURAL MODELS OF INFORMATION MANAGEMENT SYSTEM OF MOVING OBJECTS
Maksym Korobchynskyi, Oleg Mashkov78-80
-
AUTOMATION OF THE SMART HOUSE SYSTEM-LEVEL DESIGN
Vasyl Teslyuk, Vasyl Beregovskyi, Andrii Pukach81-84
Archives
-
Vol. 7 No. 4
2017-12-21 23
-
Vol. 7 No. 3
2017-09-30 24
-
Vol. 7 No. 2
2017-06-30 27
-
Vol. 7 No. 1
2017-03-03 33
-
Vol. 6 No. 4
2016-12-22 16
-
Vol. 6 No. 3
2016-08-08 18
-
Vol. 6 No. 2
2016-05-10 16
-
Vol. 6 No. 1
2016-02-04 16
-
Vol. 5 No. 4
2015-10-28 19
-
Vol. 5 No. 3
2015-09-02 17
-
Vol. 5 No. 2
2015-06-30 15
-
Vol. 5 No. 1
2015-03-31 18
-
Vol. 4 No. 4
2014-12-09 29
-
Vol. 4 No. 3
2014-09-26 22
-
Vol. 4 No. 2
2014-06-18 21
-
Vol. 4 No. 1
2014-03-12 19
-
Vol. 3 No. 4
2013-12-27 20
-
Vol. 3 No. 3
2013-07-24 13
-
Vol. 3 No. 2
2013-05-16 9
-
Vol. 3 No. 1
2013-02-14 11
Main Article Content
DOI
Authors
Abstract
This paper presents an analysis of the possibility of using textural features for mammographic images classification. Textural features are calculated base on histogram, gradient matrix, run-length matrix, co-occurence matrix. Classification is based on k-NN classifier, the regions of interest can be classified as normal or abnormal. Results of some experiments are presented. All of abnormal regions were classified correctly
Keywords:
References
Guliato D., Rangayyan R., Carnielli W., Zuo J., Desautels J.: Segmentation of breast tumors in mammograms by fuzzy region growing, Engineering in Medicine and Biology Society, Proceedings of the 20th Annual International Conference of the IEEE, 1998, vol. 2, pp. 1002-1005.
Haralick R.M., Shanmugam K., Dinstein I.: Textural Features for Image Classification, IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-3, 1973, No. 6, pp. 610-621. DOI: https://doi.org/10.1109/TSMC.1973.4309314
Huo Z., Giger M., Vyborny C., Metz C.: Breast cancer: Effectiveness of computer-aided diagnosis – observer study with independent database of mammograms1, Radiology, 2002, vol. 224, no. 2, pp. 560-568. DOI: https://doi.org/10.1148/radiol.2242010703
Lazarek J., Szczepaniak P.S., Tomczyk A.: Method of Pattern Detection in Mammographic Images, Intelligent Systems in Technical and Medical Diagnosis, Eds. Józef Korbicz, Marek Kowal. Springer, 2014, pp. 235-245. DOI: https://doi.org/10.1007/978-3-642-39881-0_19
Lyra M., Lyra S., Kostakis B., Drosos S., Georgosopoulus C., Skouroliakou K.: Digital mammography texture analysis by computer assisted image processing, IEEE International Workshop on Imaging Systems and Techniques – IST 2008 Chania, Greece, September 10–12, 2008. DOI: https://doi.org/10.1109/IST.2008.4659944
Rangayyan R. M., Ayres F. J., Desautels J. L.: A review of computer-aided diagnosis of breast cancer: Toward the detection of subtle signs, Journal of the Franklin Institute, vol. 344, no. 34, 2007 pp. 312-348. DOI: https://doi.org/10.1016/j.jfranklin.2006.09.003
Sampat M., Markey M., Bovik A.: Computer-aided detection and diagnosis in mammography, Handbook of Image and Video Processing, vol. 2, 2005, pp. 1195-1217. DOI: https://doi.org/10.1016/B978-012119792-6/50130-3
Szczepaniak P.S.: Obliczenia inteligentne, szybkie przekształcenia i klasyfikatory, Akademica Oficyna Wydawnicza EXIT, Warszawa, 2004.
Szczepaniak P.S., Tadeusiewicz R.: The role of artificial intelligence, knowledge and wisdom in automatic image understanding, Journal of Applied Computer Science – JACS, 18, 2010, No.1, pp. 75-85.
Zhou J., Feng Ch., Liu X., Tang J.: A Texture Features based Medical Image Retrieval System for Breast Cancer, 2012 7th International Conference on Computing and Convergence Technology (ICCCT), IEEE, pp. 1010 – 1015.
„Mias dataset”. http://peipa.essex.ac.uk/info/mias.html. MIAS dataset.
Article Details
Abstract views: 319
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
