SOLVING THE FAILING TRACK MARKER PROBLEM IN AUTOMATED GUIDED VEHICLE SYSTEMS – A CASE STUDY


Abstract

This paper is a case study of the development of a localization and positioning subsystem of an Automated Guided Vehicle-based transportation system. The described system uses primarily RFID markers for localization. In some deployments, those markers occasionally fail, mostly due to being crushed by cargo platforms operated by a human or due to internal defects. Those failures are not common enough to warrant switching from marker-based localization to a more sophisticated technique, but they require additional effort from maintenance staff. In this case study, we present our solution to this problem – a self-tuning algorithm that is able to detect marker failures and, in most cases, keep the system operational. The paper briefly discusses business circumstances under which such a solution is reasonable and then describes in detail the entire technical process, including data acquisition, verification, algorithm development and finally, the result of deploying the system in production.


Keywords

Industrial control; Unmanned vehicles; Fault tolerance; Maintenance

Bandyopadhyay S.: Intelligent Vehicles and Materials Transportation in the Manufacturing Sector: Emerging Research and Opportunities. IGI Global 2017.

Campion G., Bastin G., D’Andréa-Novel B.: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. Proceedings IEEE International Conference on Robotics and Automation (IEEE) 1993, [http://doi.org/10.1109/ROBOT.1993.292023].

Clausing D.: Taguchi methods to improve the development process. IEEE International Conference on Communications – Spanning the Universe 2, 1988 826–832, [http://doi.org/10.1109/ICC.1988.13674].

Deming W. E.: Sample Design in Business Research. Wiley-Interscience, 1990.

Dreyfus S.: An Appraisal of Some Shortest-Path Algorithms. Operations Research 17(3), 1969, [http://doi.org/10.1287/opre.17.3.395].

Ismail A. H., Ramli H. R., Ahmad M. H., Marhaban M. H.: Vision-based system for line following mobile robot. IEEE Symposium on Industrial Electronics & Applications 2009, 642–645, [http://doi.org/10.1109/ISIEA.2009.5356366].

Lee J-W., Choi S-U., Lee C-H., Lee Y-J., Lee K-S: A study for AGV steering control and identification using vision system. IEEE International Symposium on Industrial Electronics Proceedings 3, 2001, 1575–1578 (Cat. No. 01TH8570), [http://doi.org/10.1109/ISIE.2001.931941].

Leitner S. H., Mahnke W.: OPC UA–service-oriented architecture for industrial applications. ABB Corporate Research Center 48, 2006, 61–66.

Li L., Schultze L.: Comparison and Evaluation of SLAM Algorithms for AGV Navigation. F.-J. Villmer, E. Padoano (Eds.): Department of Production Engineering and Management. Production Engineering and Management. Lemgo 2018.

Pang Y., De La Cruz A. L., Lodewijks G.: Bipolar magnetic positioning system for automated guided vehicles. IEEE Intelligent Vehicles Symposium 2008, 883–888, [http://doi.org/10.1109/IVS.2008.4621228].

Park J., Kim J. Y., Kim B., Kim S.: Global Map Generation using LiDAR and Stereo Camera for Initial Positioning of Mobile Robot. International Conference on Information and Communication Technology Robotics (ICT-ROBOT), 2018, 1–4, [http://doi.org/10.1109/ICT-ROBOT.2018.8549897].

Park J., Lee J., Park Y., Kim S. W.: AGV parking system based on tracking landmark. 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology 2009, 340–343 [http://doi.org/10.1109/ECTICON.2009.5137022].

Quan S., Chen J.: AGV Localization Based on Odometry and LiDAR. 2nd World Conference on Mechanical Engineering and Intelligent Manufacturing 2019, 483–486, [http://doi.org/10.1109/WCMEIM48965.2019.00102].

Ray K. A., Gupta M., Behera L., Jamshidi M.: Sonar based Autonomous Automatic Guided Vehicle (AGV) navigation. IEEE International Conference on Systems and System Engineering 2008, 1–6,[http://doi.org/10.1109/SYSOSE.2008.4724179].

Wiklund U., Andersson U., Hyyppä K.: AGV navigation by angle measurements. Automated guided vehicle systems: Proceedings of the 6th International Conference 1988, 199–212.

Wang D., Low C. B.: Modeling Skidding and Slipping in Wheeled Mobile Robots: Control Design Perspective. IEEE/RSJ International Conference on Intelligent Robots and Systems 2006, 1867–1872,[http://doi.org/10.1109/IROS.2006.282309].

Download

Published : 2020-09-30


Lewowski, T. (2020). SOLVING THE FAILING TRACK MARKER PROBLEM IN AUTOMATED GUIDED VEHICLE SYSTEMS – A CASE STUDY. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 10(3), 36-43. https://doi.org/10.35784/iapgos.1512

Tomasz Lewowski  tomasz.lewowski@ratelware.com
Wrocław University of Science and Technology, Faculty of Computer Science and Management, Department of Applied Informatics, Wrocław, Poland; Octant sp. z o.o., www.octant.pl  Poland
http://orcid.org/0000-0003-4897-1263