ANALYSES OF SKIN LESION AREAS AFTER THRESHOLDING
Abstract
Melanoma is one of the fastest spreading cancers. The aim of the article is to segment the skin lesions from human skin dermatoscopic images covered by melanoma. Threshold segmentation was used, which allows a single skin lesion to be analyzed. It shows the four areas of each based on their color. The created software monitors the border of skin lesion areas. Segmentation and analysis of the resulting images with different areas of skin change was carried out in the Matlab software.
Keywords:
dermatoscopy, melanoma, thresholding, image region analize, dermatoscopy, melanoma, thresholding, image region analysisReferences
Argenziano G., Catricalà C., Ardigo M.: Seven-point checklist of dermoscopy revisited. The British Journal of Dermatology 4, 2011, 785–90.
DOI: https://doi.org/10.1111/j.1365-2133.2010.10194.x
Google Scholar
Breslow A.: Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Annals of Surgery 172, 1970, 902–908.
DOI: https://doi.org/10.1097/00000658-197011000-00017
Google Scholar
Celebi M. E., Kingravi H. A., Uddin B.: A methodological approach to the classification of dermoscopy images. Computerized Medical Imaging and Graphics 2007, 362–373.
DOI: https://doi.org/10.1016/j.compmedimag.2007.01.003
Google Scholar
Celebi M. E., Wen Q., Hwang S., Iyatomi H., Schaefer G.: Lesion border detection in dermoscopy images using ensembles of thresholding methods. Skin Res. Technol. 19 (1), 2013, 252–258.
DOI: https://doi.org/10.1111/j.1600-0846.2012.00636.x
Google Scholar
Clark W. H., From L., Bernardino E. A.: Histogenesis and biologic behavior of primary human malignant melanomas of the skin. Cancer Research 29, 1969, 705–726.
Google Scholar
Damilola A., Okuboyejo O.: Automating skin disease diagnosis using image classifications. Proceedings of the world congress on engineering and computer science II, San Francisco 2013.
Google Scholar
Dermatoscopy images database: https://www.dermis.net/dermisroot/en/list/m/search.htm (accessed: 20.03.2020).
Google Scholar
Dermatoscopy images database: https://www.isic-archive.com/ (accessed: 20.03.2020).
Google Scholar
Emery J. D, Hunter J., Hall P. N.: Accuracy of siascopy for pigmented skin lesions encountered in primary care: development and validation of a new diagnostic algorithm. BMC Dermatology 10, 2010, 1–9.
DOI: https://doi.org/10.1186/1471-5945-10-9
Google Scholar
Fiorese, M., Peserico, E., Silletti, A.: VirtualShave: automated hair removal from digital dermatoscopic image. Proc. IEEE EMBS, 2011, 5145–5148.
DOI: https://doi.org/10.1109/IEMBS.2011.6091274
Google Scholar
Ganster H., Pinz A., R¨ohrer R.: Automated melanoma recognition medical imaging. IEEE Transactions 20(3), 2001, 233–239.
DOI: https://doi.org/10.1109/42.918473
Google Scholar
Henning J., Dusza S., Wang S.: The cash (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy. Archives of Dermatology 56, 2007, 45–52.
DOI: https://doi.org/10.1016/j.jaad.2006.09.003
Google Scholar
https://www.mathworks.com/help/images/pixel-values-and-image-statistics.html (accessed: 20.03.2020).
Google Scholar
Huang, A., Kwan, S., Chang, W., Liu, M., Chi, M., Chen, G.: A robust hair segmentation and removal approach for clinical images of skin lesions. Proc. IEEE EMBS 2013, 3315–3318.
DOI: https://doi.org/10.1109/EMBC.2013.6610250
Google Scholar
Jahanifar M., Tajeddin N. Z., Mohammadzadeh Asl B., Gooya A.: Supervised saliency map driven segmentation of lesions in dermoscopic images. IEEE Journal of Biomedical and Health Informatics 23(2), 2019, 509–518.
DOI: https://doi.org/10.1109/JBHI.2018.2839647
Google Scholar
Kiani, K., Sharafat, A.R.: E-shaver: An improved dullrazor for digitally removing dark and light-colored hairs in dermoscopic images. Comput. Biol. Med. 41(3), 2011, 139–145.
DOI: https://doi.org/10.1016/j.compbiomed.2011.01.003
Google Scholar
Kittler H., Riedl E., Rosendahl C.: Dermatoscopy of unpigmented lesions of the skin: a new classification of vessel morphology based on pattern analysis. Dermapathology. Practical and Conceptual 14, 2008, 3–7.
Google Scholar
Koehoorn J., Sobiecki A. C., Boda D., Diaconeasa A., Doshi S., Paisey S., Jalba A., Telea A.: Automated digital hair removal by threshold decomposition and morphological analysis. International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing 9082, 2015, 15–26.
DOI: https://doi.org/10.1007/978-3-319-18720-4_2
Google Scholar
Korjakowska J. J.: Automatic detection of melanomas: An application based on the abcd criteria. Springer 7339, 2012, 67–76.
DOI: https://doi.org/10.1007/978-3-642-31196-3_7
Google Scholar
Korotkov K., Garcia R.: Computerized analysis of pigmented skin lesions: A review. Artificial Intelligence in Medicine 56(2), 2012, 69–90.
DOI: https://doi.org/10.1016/j.artmed.2012.08.002
Google Scholar
Leo G. D., Paolillo A., Sommella P., G. Fabbrocini G., Rescigno O.: A software tool for the diagnosis of melanomas. IEEE Instrumentation and Measurement Technology Conference 2010, 886–891.
Google Scholar
Maglogiannis I., Pavlopoulos S., Koutsouris D.: An integrated computer supported acquisition, handling, and characterization system for pigmented skin lesions in dermatological images. IEEE Transactions on Information Technology in Biomedicine 2005, 86–98.
DOI: https://doi.org/10.1109/TITB.2004.837859
Google Scholar
Mendonca T., Ferreira P. M., Marques J. S., Marcal A. R., Rozeira J.: A dermoscopic image database for research and benchmarking. 35th Annual International Conference of the IEEE EMBS Osaka 2013, 5437–5440.
DOI: https://doi.org/10.1109/EMBC.2013.6610779
Google Scholar
Michalska M.: Przegląd sposobów segmentacji zmian skórnych. Interdyscyplinarne prace doktorantów Politechniki Lubelskiej 2019, 33-45.
Google Scholar
Michalska M.: Wykorzystanie segmentacji przez progowanie w wykrywaniu czerniaka skóry. Wybrane zagadnienia z zakresu elektrotechniki, inżynierii biomedycznej i budownictwa prace doktorantów Politechniki Lubelskiej 2019, 147–157.
Google Scholar
Michalska M., Hotra O.: Quality analysis of dermatoscopic images thresholding with malignant melanoma, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2019, 768–774
DOI: https://doi.org/10.1117/12.2536671
Google Scholar
Oliveira R. B., Filho E. M., Ma Z., Papa J. P., Pereira A. S., Tavares J. M. R. S.: Computational methods for the image segmentation of pigmented skin lesions: A review. Comput. Methods Programs Biomed. 131, 2016, 127–141.
DOI: https://doi.org/10.1016/j.cmpb.2016.03.032
Google Scholar
Przystalski K.: Detekcja i klasyfikacja barwnikowych zmian skóry na zdjęciach wielowarstwowych [PhD thesis]. Warszawa 2014.
Google Scholar
Rosendahl C., Cameron A., McColl I., Wilkinson D.: Dermatoscopy in routine practice Chaos and Clues. Australian Family Physician 41(7), 2012, 482–487.
Google Scholar
Soyer P., Argenziano G., Zalaudek I.: Three-point checklist of dermoscopy. Dermatology 208, 2004, 27–31.
DOI: https://doi.org/10.1159/000075042
Google Scholar
Statistics
Abstract views: 326PDF downloads: 200
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.