A REVIEW OF VOLTAGE CONTROL STRATEGIES FOR LOW-VOLTAGE NETWORKS WITH HIGH PENETRATION OF DISTRIBUTED GENERATION

Klara Janiga

k.janiga@pollub.pl
Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Lublin, Poland (Poland)
http://orcid.org/0000-0002-1798-0434

Abstract

Deterioration of voltage conditions is one of the frequent consequences of connecting an increasing number of photovoltaic sources to the low-voltage (LV) power grid. Under adverse conditions, i.e. low energy consumption and high insolation, microgeneration can cause voltage surges that violate acceptable limits. Research shows that the increase in voltage is the main limitation for connecting new energy microsources to the LV network and forces the reconstruction of the network. An alternative to costly modernizations can be the implementation of appropriate strategies for controlling network operation to maintain the voltage at the required level. The article presents an overview of the methods and concepts of voltage control in a low-voltage network developed so far to mitigate the undesirable phenomenon of voltage boosting. The focus was mainly on local methods—not requiring communication infrastructure—as best suited to the conditions of Polish distribution networks. Gathering the results of many tests and simulations carried out in different conditions and on different models allowed for the formulation of general conclusions and can be a starting point for further research on a control method that can be widely used in the national power system.


Keywords:

voltage control, distributed power generation, photovoltaic systems, power distribution lines

Aggarwal M., Gupta S. K., Sudan M., Kasal G.: D-STATCOM control in low voltage distribution system with distributed generation. 3rd International Conference on Emerging Trends in Engineering and Technology, ICETET 2010, 2010, 426–429, [http://doi.org/10.1109/ICETET.2010.148].
DOI: https://doi.org/10.1109/ICETET.2010.148   Google Scholar

Alam M. J.E., Muttaqi K. M., Sutanto D.: An approach for online assessment of rooftop solar PV impacts on low-voltage distribution networks. IEEE Transactions on Sustainable Energy 5(2)/2014, 663–672, [http://doi.org/10.1109/TSTE.2013.2280635].
DOI: https://doi.org/10.1109/TSTE.2013.2280635   Google Scholar

Andrén F., Bletterie B., Kadam S., Kotsampopoulos P., Bucher C.: On the Stability of Local Voltage Control in Distribution Networks with a High Penetration of Inverter-Based Generation. IEEE Transactions on Industrial Electronics 62(4)/2015, 2519–2529, [http://doi.org/10.1109/TIE.2014.2345347].
DOI: https://doi.org/10.1109/TIE.2014.2345347   Google Scholar

Appen J. von, Braun M., Stetz T., Diwold K., Geibel D.: Time in the sun: The challenge of high PV penetration in the German electric grid. IEEE Power and Energy Mag. 11(2)/2013, 55–64, [http://doi.org/10.1109/MPE.2012.2234407].
DOI: https://doi.org/10.1109/MPE.2012.2234407   Google Scholar

Aziz T., Ketjoy N.: Enhancing PV Penetration in LV Networks Using Reactive Power Control and On Load Tap Changer with Existing Transformers. IEEE Access 6/2017, 2683–2691, [http://doi.org/10.1109/ACCESS.2017.2784840].
DOI: https://doi.org/10.1109/ACCESS.2017.2784840   Google Scholar

Barr J., Majumder R.: Integration of distributed generation in the Volt/VAR management system for active distribution networks. IEEE Transactions on Smart Grid 6(2)/2015, 576–586, [http://doi.org/10.1109/TSG.2014.2363051].
DOI: https://doi.org/10.1109/TSG.2014.2363051   Google Scholar

Biserica M., Berseneff B., Bésanger Y., Kiény C.: Upgraded coordinated voltage control for distribution systems. 2011 IEEE PES Trondheim PowerTech: The Power of Technology for a Sustainable Society, POWERTECH 2011, 2011, 1–6, [http://doi.org/10.1109/PTC.2011.6019328].
DOI: https://doi.org/10.1109/PTC.2011.6019328   Google Scholar

Bletterie B., Kadam S., Bolgaryn R., Zegers A.: Voltage Control with PV Inverters in Low Voltage Networks-In Depth Analysis of Different Concepts and Parameterization Criteria. IEEE Transactions on Power Systems 32(1)/2017, 177–185, [http://doi.org/10.1109/TPWRS.2016.2554099].
DOI: https://doi.org/10.1109/TPWRS.2016.2554099   Google Scholar

Braun M., Stetz T., Reimann T., Valov B., Arnold G.: Optimal Reactive Power Supply in Distribution Networks – Technological and Economic Assessment for PV-Systems. Frauhofer IWES 49/2009, 1–10,[http://doi.org/10.4229/24thEUPVSEC2009-5AO.7.5].
  Google Scholar

Caldon R., Coppo M., Turri R.: A network voltage control strategy for LV inverter interfaced users. 8th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2012), 2012, 1–5, [http://doi.org/10.1049/cp.2012.2023].
DOI: https://doi.org/10.1049/cp.2012.2023   Google Scholar

Caldon R., Coppo M., Turri R.: Coordinated voltage control in MV and LV distribution networks with inverter-interfaced users. IEEE Grenoble Conference PowerTech POWERTECH 2013, 1–5,[http://doi.org/10.1109/PTC.2013.6652491].
DOI: https://doi.org/10.1109/PTC.2013.6652491   Google Scholar

Condon D., McPhail D., Ingram D.: Application of low voltage statcom to correct voltage issues caused by inverter energy systems. Australasian Universities Power Engineering Conference (AUPEC), 2016, 1–6, [http://doi.org/10.1109/aupec.2016.7749332].
DOI: https://doi.org/10.1109/AUPEC.2016.7749332   Google Scholar

Constantin A., Lazar R. D.: Open Loop Q(U) Stability Investigation in Case of PV Power Plants. Proc. 27th Eur. Photovolt. Solar Energy Conf. Exhib., 2012, 3745–3749.
  Google Scholar

Conti S., Greco A., Messina N., Raiti S.: Local voltage regulation in LV distribution networks with PV distributed generation. International Symposium on Power Electronics, Electrical Drives, Automation and Motion SPEEDAM 2006, 519–524, [http://doi.org/10.1109/SPEEDAM.2006.1649827].
DOI: https://doi.org/10.1109/SPEEDAM.2006.1649827   Google Scholar

Demirok E., González P. C., Frederiksen K. H. B., Sera D., Rodriguez P., Teodorescu R.: Local reactive power control methods for overvoltage prevention of distributed solar inverters in low-voltage grids. IEEE Journal of Photovoltaics 1(2), 2011, 174–182, [http://doi.org/10.1109/JPHOTOV.2011.2174821].
DOI: https://doi.org/10.1109/JPHOTOV.2011.2174821   Google Scholar

Dong J., Xue Y., Olama M., Kuruganti T., Nutaro J., Winstead C.: Distribution Voltage Control: Current Status and Future Trends. 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems PEDG 2018, [http://doi.org/10.1109/PEDG.2018.8447628].
DOI: https://doi.org/10.1109/PEDG.2018.8447628   Google Scholar

Efkarpidis N., Wijnhoven T., Gonzalez C., Rybel T., Driesen J.: Coordinated voltage control scheme for Flemish LV distribution grids utilizing OLTC transformers and D-STATCOM’s. 12th IET International Conference on Developments in Power System Protection, DPSP 2014, 1–6.
DOI: https://doi.org/10.1049/cp.2014.0041   Google Scholar

Einfalt A., Kupzog F., Brunner H., Lugmaier A.: Control strategies for smart low voltage grids – the Project DG DemoNet – Smart LV Grid. CIRED 2012 Workshop: Integration of Renewables into the Distribution Grid, 2012, 1–4, [http://doi.org/10.1049/cp.2012.0824].
DOI: https://doi.org/10.1049/cp.2012.0824   Google Scholar

Einfalt A., Zeilinger F., Schwalbe R., Bletterie B., Kadam S.: Controlling active low voltage distribution grids with minimum efforts on costs and engineering. IECON Proceedings (Industrial Electronics Conference), 2013, 7456–7461, [http://doi.org/10.1109/IECON.2013.6700374].
DOI: https://doi.org/10.1109/IECON.2013.6700374   Google Scholar

Grilo A., Casaca A., Nunes M., Bernardo A., Rodrigues P., Almeida J. P.: A management system for low voltage grids. IEEE Manchester PowerTech, 2017, 1–6, [http://doi.org/10.1109/PTC.2017.7980826].
DOI: https://doi.org/10.1109/PTC.2017.7980826   Google Scholar

Guo Y., Lin Y., Sun M.: The impact of integrating distributed generations on the losses in the smart grid. IEEE Power and Energy Society General Meeting, 2011, 1–6, [http://doi.org/10.1109/PES.2011.6039931].
DOI: https://doi.org/10.1109/PES.2011.6039931   Google Scholar

Han X., Kosek A. M., Morales Bondy D. E., Bindner H. W., You S., Tackie D. V., Mehmedalic J., Thordarson F.: Assessment of distribution grid voltage control strategies in view of deployment. IEEE International Workshop on Intelligent Energy Systems, IWIES 2014, 46–51, [http://doi.org/10.1109/IWIES.2014.6957045].
DOI: https://doi.org/10.1109/IWIES.2014.6957045   Google Scholar

Hasan S., Luthander R., Juan De S.: Reactive Power Control for LV Distribution Networks Voltage Management. IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT-Europe 2018, 1–6,[http://doi.org/10.1109/ISGTEurope.2018.8571817].
DOI: https://doi.org/10.1109/ISGTEurope.2018.8571817   Google Scholar

Hashemi S., Østergaard J., Degner T., Brandl R., Heckmann W.: Efficient Control of Active Transformers for Increasing the PV Hosting Capacity of LV Grids. IEEE Transactions on Industrial Informatics 13(1), 2017, 270–277,[http://doi.org/10.1109/TII.2016.2619065].
DOI: https://doi.org/10.1109/TII.2016.2619065   Google Scholar

Heidl M.: MorePV2grid – More functionalities for increased integration of PV into grid – report, 2013.
  Google Scholar

Hempel S., Schmidt J. D., Gambn P., Tröster E.: Smart network control with coordinated PV infeed. IET Renewable Power Generation 13(5), 2019, 661–667, [http://doi.org/10.1049/iet-rpg.2018.5268].
DOI: https://doi.org/10.1049/iet-rpg.2018.5268   Google Scholar

Holt M., Grosse-Holz G., Rehtanz C.: Line Voltage Regulation in Low Voltage Grids. CIRED Workshop – Ljubljana, 2018.
  Google Scholar

Holt M., Maasmann J., Rehtanz C.: Line voltage regulator based on magnetic-controlled inductors for low-voltage grids. CIRED – Open Access Proceedings Journal 2017, 278–281, [http://doi.org/10.1049/oap-cired.2017.0207].
DOI: https://doi.org/10.1049/oap-cired.2017.0207   Google Scholar

Hu J., Marinelli M., Coppo M., Zecchino A., Bindner H. W.: Coordinated voltage control of a decoupled three-phase on-load tap changer transformer and photovoltaic inverters for managing unbalanced networks. Electric Power Systems Research, 2016, [http://doi.org/10.1016/j.epsr.2015.10.025].
DOI: https://doi.org/10.1016/j.epsr.2015.10.025   Google Scholar

J. Zhao, Y. Li, P. Li, C. Wang, H. Ji, L. Ge, Y. Song: Local voltage control strategy of active distribution network with PV reactive power optimization. IEEE Power & Energy Society General Meeting, 2017, 1–5, [http://doi.org/10.1109/PESGM.2017.8274386].
DOI: https://doi.org/10.1109/PESGM.2017.8274386   Google Scholar

Jamperez M., Yang G., Kjaer S. B.: Voltage regulation in LV grids by coordinated volt-var control strategies. Journal of Modern Power Systems and Clean Energy 2(4)/2014, 319–328, [http://doi.org/10.1007/s40565-014-0072-0].
DOI: https://doi.org/10.1007/s40565-014-0072-0   Google Scholar

Kacejko P., Adamek S., Wancerz M., Jędrychowski R.: Ocena możliwości opanowania podskoków napięcia w sieci nn o dużym nasyceniu mikroinstalacjami fotowoltaicznymi. Wiadomości Elektrotechniczne 85(9)/2017, 20–26.
DOI: https://doi.org/10.15199/74.2017.9.3   Google Scholar

Kacejko P., Pijarski P.: Mitigation of Voltage Rise Caused by Intensive PV Development in LV Grid. 7th Solar Integration Workshop, 2017, 7–11.
  Google Scholar

Kacejko P., Pijarski P.: Ograniczenie wzrostu napiecia spowodowane intensywnym rozwojem fotowoltaiki w sieci nn. Energia Elektryczna 9/2018.
  Google Scholar

Kanchev H., Colas F., Lazarov V., Francois B.: Emission reduction and economical optimization of an urban microgrid operation including dispatched PV-based active generators. IEEE Transactions on Sustainable Energy 5(4)/2014, 1397–1405, [http://doi.org/10.1109/TSTE.2014.2331712].
DOI: https://doi.org/10.1109/TSTE.2014.2331712   Google Scholar

Karthikeyan N., Pokhrel B. R., Pillai J. R., Bak-Jensen B.: Coordinated voltage control of distributed PV inverters for voltage regulation in low voltage distribution networks. IEEE PES Innovative Smart Grid Technologies Conference Europe ISGT-Europe 2017, 1–6, [http://doi.org/10.1109/ISGTEurope.2017.8260279].
DOI: https://doi.org/10.1109/ISGTEurope.2017.8260279   Google Scholar

Kerber G., Witzmann R., Sappl H.: Voltage limitation by autonomous reactive power control of grid connected photovoltaic inverters. CPE 2009 – 6th International Conference-Workshop - Compatibility and Power Electronics, 2009, 129–133, [http://doi.org/10.1109/CPE.2009.5156024].
DOI: https://doi.org/10.1109/CPE.2009.5156024   Google Scholar

Kowalak R., Małkowski R.: Energoelektroniczne kompensatory bocznikowe jako sterowane źródła mocy biernej. Acta Energetica, Vol. 1/6, 2011, 13–20.
  Google Scholar

Kraiczy M., Fakhri A. L., Stetz T., Braun M.: Do it locally: Local voltage support by distributed generation – A management summary. Int. Energy Agency, Paris, France, Tech. Rep. IEA-PVPS T14-08, 2017.
  Google Scholar

Liu X., Aichhorn A., Liu L., Li H.: Coordinated control of distributed energy storage system with tap changer transformers for voltage rise mitigation under high photovoltaic penetration. IEEE Transactions on Smart Grid 3/2, 2012, 897–906, [http://doi.org/10.1109/TSG.2011.2177501].
DOI: https://doi.org/10.1109/TSG.2011.2177501   Google Scholar

Mahmud N., Zahedi A.: Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation. Renewable and Sustainable Energy Reviews 64/2016, 582–595, [http://doi.org/10.1016/j.rser.2016.06.030].
DOI: https://doi.org/10.1016/j.rser.2016.06.030   Google Scholar

Marggraf O., Laudahn S., Engel B., Lindner M., Aigner C., Witzmann R., Schoeneberger M., Patzack S., Vennegeerts H., Cremer M., Meyer M., Schnettler A., Berber I., Buelo T., Brantl J., Wirtz F., Frings R., Pizzutto F.: U-Control – Analysis of Distributed and Automated Voltage Control in current and future Distribution Grids. International ETG Congress 2017, 1–6.
  Google Scholar

Mawarni D. E., Ali M. M.V. M., Nguyen P. H., Kling W. L., Jerele M.: A case study of using OLTC to mitigate overvoltage in a rural European low voltage network. Proceedings of the Universities Power Engineering Conference, 2015, 1–5 [http://doi.org/10.1109/UPEC.2015.7339875].
DOI: https://doi.org/10.1109/UPEC.2015.7339875   Google Scholar

Olivier F., Aristidou P., Ernst D., van Cutsem T.: Active Management of Low-Voltage Networks for Mitigating Overvoltages Due to Photovoltaic Units. IEEE Transactions on Smart Grid 7(2)/2016, 926–936,[http://doi.org/10.1109/TSG.2015.2410171].
DOI: https://doi.org/10.1109/TSG.2015.2410171   Google Scholar

Othman M. M., Ahmed M. H., Salama M. M.A.: A Probabilistic Economic Assessment Approach for Active Power Curtailment of Photovoltaic Based Distributed Generators. IEEE Power and Energy Society General Meeting, 2018, 1–5, [http://doi.org/10.1109/PESGM.2018.8586463].
DOI: https://doi.org/10.1109/PESGM.2018.8586463   Google Scholar

Pachanapan P., Anaya-Lara O., Dyśko A., Lo K. L.: Adaptive zone identification for voltage level control in distribution networks with DG. IEEE Transactions on Smart Grid 3/4, 2012, 1594–1602,[http://doi.org/10.1109/TSG.2012.2205715].
DOI: https://doi.org/10.1109/TSG.2012.2205715   Google Scholar

Pal K., Kumar Panigrahi B., Mohapatra S., Mohapatra A.: Impact of STATCOM on voltage profile in a DG penetrated grid connected system. IEEE International Conference on Circuit, Power and Computing Technologies, ICCPCT 2017, 2017, 1–5, [http://doi.org/10.1109/ICCPCT.2017.8074213].
DOI: https://doi.org/10.1109/ICCPCT.2017.8074213   Google Scholar

Pijarski P., Kacejko P.: Optimization of the Selection of P(U) and Q(U) Characteristic Parameters of Solar Microinverters. Acta Energetica 2/2019, 6–13, [http://doi.org/10.12736/issn.2330-3022.2019201].
  Google Scholar

Procopiou A. T., Ochoa L. F.: Voltage Control in PV-Rich LV Networks Without Remote Monitoring. IEEE Transactions on Power Systems 32(2)/2017, 1224–1236, [http://doi.org/10.1109/TPWRS.2016.2591063].
DOI: https://doi.org/10.1109/TPWRS.2016.2591063   Google Scholar

Reeves D., Nourbakhsh G., Mokhtari G., Ghosh A.: A distributed control based coordination scheme of household PV systems for overvoltage prevention. IEEE Power and Energy Society General Meeting, 2013, 1–5, [http://doi.org/10.1109/PESMG.2013.6672774].
DOI: https://doi.org/10.1109/PESMG.2013.6672774   Google Scholar

Rynek fotowoltaiki w Polsce. Raport VII edycja, Warszawa 2019.
  Google Scholar

Samadi A., Shayesteh E., Eriksson R., Rawn B., Söder L.: Coordinated Active Power-Dependent Voltage Regulation in Distribution Grids With PV Systems. Renewable Energy 71/2014, 315–323, [http://doi.org/10.1016/j.renene.2014.05.046].
DOI: https://doi.org/10.1016/j.renene.2014.05.046   Google Scholar

Sansawatt T., Ochoa L. F., Harrison G. P.: Integrating distributed generation using decentralised voltage regulation. IEEE PES General Meeting, PES 2010, 1–6, [http://doi.org/10.1109/PES.2010.5588127].
DOI: https://doi.org/10.1109/PES.2010.5588127   Google Scholar

Schoeneberger M. 2017: Derivation of a Q(U)-control Tolerance Band for Inverters in Order to Meet Voltage Quality Criteria. 7th Solar Integration Workshop.
  Google Scholar

Schwalbe R., Brunner H., Stifter M., Abart A., Traxler E., Radauer M., Niederhuemer W.: DG-demonet smart LV grid-increasing hosting capacity of LV grids by extended planning and voltage control. International Symposium on Smart Electric Distribution Systems and Technologies, EDST 2015, 2015, 63–69, [http://doi.org/10.1109/SEDST.2015.7315184].
DOI: https://doi.org/10.1109/SEDST.2015.7315184   Google Scholar

Shoubaki E., Essakiappan S., Bhowmik P., Manjrekar M., Enslin J., Laval S., Vukojevic A., Handley J.: Distributed μ-STATCOM for voltage support and harmonic mitigation on low voltage networks. IEEE Applied Power Electronics Conference and Exposition (APEC), 2017, 925–930, [http://doi.org/10.1109/APEC.2017.7930807].
DOI: https://doi.org/10.1109/APEC.2017.7930807   Google Scholar

Stetz T.: Autonomous Voltage Control Strategies in Distribution Grids with Photovoltaic Systems: Technical and Economic Assessment, 2014.
  Google Scholar

Stetz T., Marten F., Braun M.: Improved low voltage grid-integration of photovoltaic systems in Germany. IEEE Transactions on Sustainable Energy 4/2, 2013, 534–542, [http://doi.org/10.1109/TSTE.2012.2198925].
DOI: https://doi.org/10.1109/TSTE.2012.2198925   Google Scholar

Tanaka K., Oshiro M., Toma S., Yona A., Senjyu T., Funabashi T., Kim C. H.: Decentralised control of voltage in distribution systems by distributed generators. IET Generation, Transmission and Distribution 4(11), 2010, 1251–1260, [http://doi.org/10.1049/iet-gtd.2010.0003].
DOI: https://doi.org/10.1049/iet-gtd.2010.0003   Google Scholar

Tengku Hashim T. J., Mohamed A., Shareef H.: A review on voltage control methods for active distribution networks. Przegląd Elektrotechniczny 88(6), 2012, 304–312.
  Google Scholar

Tonkoski R., Lopes L. A.C., El-Fouly T. H.M.: Coordinated active power curtailment of grid connected PV inverters for overvoltage prevention. IEEE Transactions on Sustainable Energy 2(2)/2011, 139–147,[http://doi.org/10.1109/TSTE.2010.2098483].
DOI: https://doi.org/10.1109/TSTE.2010.2098483   Google Scholar

Tonkoski R., Lopes L. A.C., EL-Fouly T. H.M.: Droop-based active power curtailment for overvoltage prevention in grid connected PV inverters. IEEE International Symposium on Industrial Electronics, 2010, 2388–2393, [http://doi.org/10.1109/ISIE.2010.5637511].
DOI: https://doi.org/10.1109/ISIE.2010.5637511   Google Scholar

Tsuji T., Goda T., Ikeda K., Tange S.: Autonomous decentralized voltage profile control of distribution network considering time-delay. International Conference on Intelligent Systems Applications to Power Systems ISAP, 2007, 1–6, [http://doi.org/10.1109/ISAP.2007.4441669].
DOI: https://doi.org/10.1109/ISAP.2007.4441669   Google Scholar

Tsuji T., Hashiguchi T., Goda T., Horiuchi K., Kojima Y.: Autonomous decentralized voltage profile control using multi-agent technology considering time-delay. Transmission and Distribution Conference and Exposition: Asia and Pacific, 2009, 1–8, [http://doi.org/10.1109/TD-ASIA.2009.5356968].
DOI: https://doi.org/10.1109/TD-ASIA.2009.5356968   Google Scholar

Tsuji T., Hashiguchi T., Goda T., Shinji T., Tsujita S.: A Study of Autonomous Decentralized Voltage Profile Control Method considering Control Priority in Future Distribution Network. EEJ Transactions on Power and Energy 129(12), 2009, 1533–1544.
DOI: https://doi.org/10.1541/ieejpes.129.1533   Google Scholar

Tsuji T., Oyama T., Hashiguchi T., Goda T., Horiuchi K., Tange S., Shinji T., Tsujita S.: A study on autonomous decentralized voltage controller in distribution network considering control priority. 3rd International Conference on Clean Electrical Power: Renewable Energy Resources Impact ICCEP, 2011, 749–754, [http://doi.org/10.1109/ICCEP.2011.6036387].
DOI: https://doi.org/10.1109/ICCEP.2011.6036387   Google Scholar

Unigwe O., Okekunle D., Kiprakis A.: Economical distributed voltage control in low-voltage grids with high penetration of photovoltaic. CIRED – Open Access Proceedings Journal/1, 2017, 1722–1725, [http://doi.org/10.1049/oap-cired.2017.1227].
DOI: https://doi.org/10.1049/oap-cired.2017.1227   Google Scholar

Wajahat M., Khalid H. A., Bhutto G. M., Bak C. L.: A comparative study into enhancing the PV penetration limit of a LV CIGRE residential network with distributed grid-tied single-phase PV systems. Energies 12(15)/2019, [http://doi.org/10.3390/en12152964].
DOI: https://doi.org/10.3390/en12152964   Google Scholar

Xin H., Lu Z., Qu Z., Gan D., Qi D.: Cooperative control strategy for multiple photovoltaic generators in distribution networks. IET Control Theory and Applications 5(14)/2011, 1617–1629, [http://doi.org/10.1049/iet-cta.2010.0538].
DOI: https://doi.org/10.1049/iet-cta.2010.0538   Google Scholar

Xin H., Qu Z., Seuss J., Maknouninejad A.: A self-organizing strategy for power flow control of photovoltaic generators in a distribution network. IEEE Transactions on Power Systems 26(3), 2011, 1462–1473, [http://doi.org/10.1109/TPWRS.2010.2080292].
DOI: https://doi.org/10.1109/TPWRS.2010.2080292   Google Scholar

Download


Published
2020-09-30

Cited by

Janiga, K. (2020). A REVIEW OF VOLTAGE CONTROL STRATEGIES FOR LOW-VOLTAGE NETWORKS WITH HIGH PENETRATION OF DISTRIBUTED GENERATION. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 10(3), 60–65. https://doi.org/10.35784/iapgos.1928

Authors

Klara Janiga 
k.janiga@pollub.pl
Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Lublin, Poland Poland
http://orcid.org/0000-0002-1798-0434

Statistics

Abstract views: 423
PDF downloads: 318