EVALUATION OF THE ELECTRICAL CAPACITANCE TOMOGRAPHY SYSTEM FOR MEASUREMENT USING 3D SENSOR

Main Article Content

DOI

Jacek Kryszyn

j.kryszyn@ire.pw.edu.pl

https://orcid.org/0000-0002-0042-0473
Damian Wanta

dwanta@ire.pw.edu.pl

https://orcid.org/0000-0002-1596-6524
Waldemar T. Smolik

w.smolik@ire.pw.edu.pl

https://orcid.org/0000-0002-1524-5049

Abstract

Further tests of EVT4 data acquisition system for electrical capacitance tomography are presented. The modular system, which can have up to 32 channels with an individual analogue to digital converter, was designed to ensure small uncertainty of capacitance measurement at high speed of imaging. The system’s performance in the context of 3D imaging was experimentally verified. In particular, we show that the measurement of changes in capacitance due to a small change of an electric permittivity distribution for the most distant electrodes in a suitably designed 3D sensor is possible using our system. Cross-plane measurements together with the measurements for the pairs of most distant electrodes are essential for accurate reconstruction of 3D distributions. Due to sensitivity of capacitance measurements obtained in the hardware, the measurements for all electrode pairs can be used in the inverse problem – the system of equations can be extended. Although the numerical condition number of a matrix of such a system is high, image reconstruction is possible from the data obtained in our system. The results of 3D image reconstruction for simple test objects are shown.

Keywords:

electrical capacitance tomography, image reconstruction, capacitance measurement, inverse problems, numerical stability

References

Article Details

Kryszyn, J., Wanta, D., & Smolik, W. T. (2019). EVALUATION OF THE ELECTRICAL CAPACITANCE TOMOGRAPHY SYSTEM FOR MEASUREMENT USING 3D SENSOR. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 9(4), 52–59. https://doi.org/10.35784/iapgos.205
Author Biographies

Jacek Kryszyn, Warsaw University of Technology

Jacek Kryszyn was born in Warsaw, Poland, in 1986. He received his M.Sc. degree in electronics and computer engineering and the PhD degree from Warsaw University of Technology, Warsaw, Poland in 2012 and 2018, respectively. He is an assistant professor at the Institute of Radioelectronics and Multimedia Technology, Electronics and Information Technology Faculty, Warsaw University of Technology since 2019. His field of interest covers Electrical Capacitance Tomography, especially small capacitance measurement methods

Damian Wanta, Warsaw University of Technology

Damian Wanta was born in Starogard Gdański, Poland, in 1991. He received the M. Sc. degree in biomedical engineering from Warsaw University of Technology, Warsaw, Poland in 2016.  He is PhD student in the Nuclear and Medical Electronics Division, Institute of Radioelectronics and Multimedia Technology, Electronics and Information Technology Faculty, Warsaw University of Technology. His current research interests include Imaging of Magnetic Nanoparticles, Electrical Capacitance Tomography and Partial Reconfiguration.

Waldemar T. Smolik, Warsaw University of Technology

Waldemar T. Smolik was born in Otwock, Poland, in 1966. He received the M.Sc., the Ph.D. and D.Sc. degrees in electronics engineering from Warsaw University of Technology, Warsaw, Poland in 1991, 1997 and 2014, respectively.

Since 2016, he is a Professor at the Institute of Radioelectronics and Multimedia Technology, Electronics and Information Technology Faculty, Warsaw University of Technology. His main research interests are computer engineering, computed tomography and medical imaging. He has published over 70 scientific papers.