EVALUATION OF THE ELECTRICAL CAPACITANCE TOMOGRAPHY SYSTEM FOR MEASUREMENT USING 3D SENSOR
Article Sidebar
Open full text
Issue Vol. 9 No. 4 (2019)
-
CONCEPT OF A SELF-LEARNING WORKPLACE CELL FOR WORKER ASSISTANCE WHILE COLLABORATION WITH A ROBOT WITHIN THE SELF-ADAPTING-PRODUCTION-PLANNING-SYSTEM
Johanna Ender, Jan Cetric Wagner, Georg Kunert, Fang Bin Guo, Roland Larek, Thorsten Pawletta4-9
-
DATA-BASED PREDICTION OF SOOT EMISSIONS FOR TRANSIENT ENGINE OPERATION
Michele Schaub10-13
-
APPLICATION OF THE LENNARD-JONES POTENTIAL IN MODELLING ROBOT MOTION
Piotr Wójcicki, Tomasz Zientarski14-17
-
APPLICATION OF ARTIFICIAL NEURAL NETWORK IN THE PROCESS OF SELECTION OF ORGANIC COATINGS
Artur Popko, Konrad Gauda18-21
-
APPLICATION OF OPTICAL PROFILOMETRY IN THE ANALYSIS OF THE DESTRUCTION PROCESS OF RENOVATION ORGANIC COATINGS FOR THE AUTOMOTIVE INDUSTRY
Konrad Gauda, Kamil Pasierbiewicz22-25
-
ANALYSIS OF DATA FROM MEASURING SENSORS FOR PREDICTION IN PRODUCTION PROCESS CONTROL SYSTEMS
Tomasz Rymarczyk, Bartek Przysucha, Marcin Kowalski, Piotr Bednarczuk26-29
-
MEASUREMENT OF TWO-PHASE GAS-LIQUID FLOW USING STANDARD AND SLOTTED ORIFICE
Barbara Tomaszewska-Wach, Mariusz R. Rząsa, Marcin Majer30-33
-
DETERMINATION OF YOUNG’S DYNAMIC MODULUS OF POLYMER MATERIALS BY RESONANCE VIBRATING-REED METHOD
Volodymyr Mashchenko, Valentine Krivtsov, Volodymyr Kvasnikov, Volodymyr Drevetskiy34-37
-
DETERMINATION OF THE OPTIMAL SCANNING STEP FOR EVALUATION OF IMAGE RECONSTRUCTION QUALITY IN MAGNETOACOUSTIC TOMOGRAPHY WITH MAGNETIC INDUCTION
Adam Ryszard Zywica, Marcin Ziolkowski38-42
-
CONSTRUCTION OF AN ULTRASONIC TOMOGRAPH FOR ANALYSIS OF TECHNOLOGICAL PROCESSES IN THE FIELD OF REFLECTION AND TRANSMISSION WAVES
Tomasz Rymarczyk, Michał Gołąbek, Piotr Lesiak, Andrzej Marciniak, Mirosław Guzik43-47
-
A NEW CONCEPT OF DISCRETIZATION MODEL FOR IMAGING IMPROVING IN ULTRASOUND TRANSMISSION TOMOGRAPHY
Tomasz Rymarczyk, Krzysztof Polakowski, Jan Sikora48-51
-
EVALUATION OF THE ELECTRICAL CAPACITANCE TOMOGRAPHY SYSTEM FOR MEASUREMENT USING 3D SENSOR
Jacek Kryszyn, Damian Wanta, Waldemar T. Smolik52-59
-
USING 3D PRINTING TECHNOLOGY TO FULL-SCALE SIMULATION OF THE UPPER RESPIRATORY TRACT
Oleg Avrunin, Yana Nosova, Ibrahim Younouss Abdelhamid, Oleksandr Gryshkov, Birgit Glasmacher60-63
-
CONCEPT AND REALIZATION OF BACKPACK-TYPE SYSTEM FOR MULTICHANNEL ELECTROPHYSIOLOGY IN FREELY BEHAVING RODENTS
Olga Chaikovska, Oleksandr Ponomarenko, Olexandr Dovgan, Igor Rokunets, Sergii Pavlov, Olena Kryvoviaz, Oleg Vlasenko64-68
-
ATRIAL FIBRILLATION DETECTION ON ELECTROCARDIOGRAMS WITH CONVOLUTIONAL NEURAL NETWORKS
Viktor Kifer, Natalia Zagorodna, Olena Hevko69-73
-
THE CONCEPT OF A FLYING ELECTROMAGNETIC FIELD MEASURING PLATFORM
Sławomir Szymaniec, Sławomir Szymocha, Łukasz Miszuda74-77
-
LOW COST SOLAR THERMOELECTRIC WATER FLOATING DEVICE TO SUPPLY MEASUREMENT PLATFORM
Andrzej Nowrot, Monika Mikołajczyk, Anna Manowska, Joachim Pielot, Antoni Wojaczek78-82
-
IMPROVING THE DYNAMICS OF AN INVERTER-BASED PV GENERATOR DURING LOAD DUMPS
Łukasz Kwaśny83-86
-
MEASUREMENT SYSTEMS FOR THE ENERGY PRODUCED BY THE PHOTOVOLTAIC SYSTEM AND CONSUMED BY THE BUILDING OF THE LUBLIN SCIENCE AND TECHNOLOGY PARK
Arkadiusz Małek87-92
-
DESIGN, CONSTRUCTION AND AUTOMATIC CONTROL SYSTEM OF SINGLE-STAGE SIX-BED ADSORPTION HEAT PUMP
Katarzyna Zwarycz-Makles, Sławomir Jaszczak93-98
Archives
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
-
Vol. 8 No. 4
2018-12-16 16
-
Vol. 8 No. 3
2018-09-25 16
-
Vol. 8 No. 2
2018-05-30 18
-
Vol. 8 No. 1
2018-02-28 18
-
Vol. 7 No. 4
2017-12-21 23
-
Vol. 7 No. 3
2017-09-30 24
-
Vol. 7 No. 2
2017-06-30 27
-
Vol. 7 No. 1
2017-03-03 33
Main Article Content
DOI
Authors
Abstract
Further tests of EVT4 data acquisition system for electrical capacitance tomography are presented. The modular system, which can have up to 32 channels with an individual analogue to digital converter, was designed to ensure small uncertainty of capacitance measurement at high speed of imaging. The system’s performance in the context of 3D imaging was experimentally verified. In particular, we show that the measurement of changes in capacitance due to a small change of an electric permittivity distribution for the most distant electrodes in a suitably designed 3D sensor is possible using our system. Cross-plane measurements together with the measurements for the pairs of most distant electrodes are essential for accurate reconstruction of 3D distributions. Due to sensitivity of capacitance measurements obtained in the hardware, the measurements for all electrode pairs can be used in the inverse problem – the system of equations can be extended. Although the numerical condition number of a matrix of such a system is high, image reconstruction is possible from the data obtained in our system. The results of 3D image reconstruction for simple test objects are shown.
Keywords:
References
Banasiak R., Wajman R., Betiuk J., Soleimani M.: Feasibility study of dielectric permittivity inspection using a 3D capacitance CT method. NDT & E International 42, 2009, 316–322. DOI: https://doi.org/10.1016/j.ndteint.2008.12.003
Brzeski P., Mirkowski J., Olszewski T., Plaskowski A., Smolik W. T., Szabatin R.: Multichannel capacitance tomograph for dynamic process imaging. Optoelectronics Review 11(3), 2003, 175–180.
Cui Z., Wang H., Chen Z., Xu Y., Yang W.: A high-performance digital system for electrical capacitance tomography. Measurement Science and Technology 22, 2011, 055503. DOI: https://doi.org/10.1088/0957-0233/22/5/055503
Dyakowski T., Jeanmeure L. F., Jaworski A. J.: Applications of electrical tomography for gas-solids and liquid-solids flows – a review. Powder Technology 112, 2000, 174–192. DOI: https://doi.org/10.1016/S0032-5910(00)00292-8
Fan Z., Gao R. X.: A new sensing method for Electrical Capacitance Tomography. IEEE Instrumentation & Measurement Technology Conference Proceedings, 2010, 48–53. DOI: https://doi.org/10.1109/IMTC.2010.5488269
Hansen P. C.: Regularization Tools version 4.0 for Matlab 7.3. Numerical Algorithms 46, 2007, 189–194. DOI: https://doi.org/10.1007/s11075-007-9136-9
Hu X., Katsouros M., Yang W., Huang S.: Further analysis of charge/discharge capacitance measurement circuit used with tomography sensors. Sensors and Transducers 80(6), 2007, 1246–1256.
Huang S. M., Plaskowski A. B., Xie C. G., Beck M. S.: Capacitance-based tomographic flow imaging system. Electronics Letters 24(7), 1988, 418–419. DOI: https://doi.org/10.1049/el:19880283
Khan S., Manwaring P., Borsic A., Halter R. J.: FPGA-Based Voltage and Current Dual Drive System for High Frame Rate Electrical Impedance Tomography. IEEE Transactions on Medical Imaging 34, 2015, 888–901. DOI: https://doi.org/10.1109/TMI.2014.2367315
Kryszyn J., Smolik W. T., Radzik B., Olszewski T., Szabatin R.: Switchless charge-discharge circuit for electrical capacitance tomography. Measurement Science and Technology 25, 2014, 115009. DOI: https://doi.org/10.1088/0957-0233/25/11/115009
Kryszyn J., Smolik W. T., Szabatin R.: 3D image reconstruction in electrical capacitance tomography. 7th World Congress in Industrial Process Tomography, 2013, 411–419.
Kryszyn J., Wanta D., Smolik W. T.: Gain Adjustment for Signal-to-Noise Ratio Improvement in Electrical Capacitance Tomography System EVT4. IEEE Sensors Journal 17(24), 2017, 8107–8116. DOI: https://doi.org/10.1109/JSEN.2017.2744985
Kryszyn J., Wróblewski P., Stosio M., Wanta D., Olszewski T., Smolik W. T.: Architecture of EVT4 data acquisition system for electrical capacitance tomography. Measurement 101, 2017, 28–39. DOI: https://doi.org/10.1016/j.measurement.2017.01.020
Li Y., Holland D. J.: Fast and robust 3D electrical capacitance tomography. Measurement Science and Technology 24, 2013, 105406. DOI: https://doi.org/10.1088/0957-0233/24/10/105406
Li Y., Holland D. J.: Optimizing the geometry of three-dimensional electrical capacitance tomography sensors. IEEE Sensors Journal 15(3), 2015, 1567–1574. DOI: https://doi.org/10.1109/JSEN.2014.2363901
Liao A., Zhou Q., Zhang Y.: Application of 3D electrical capacitance tomography in probing anomalous blocks in water. Journal of Applied Geophysics 117, 2015, 91–103. DOI: https://doi.org/10.1016/j.jappgeo.2015.03.030
Lu D., Shao F., Guo Z.: A high voltage method for measuring low capacitance for tomography. Review of Scientific Instruments 80, 2009, 053704. DOI: https://doi.org/10.1063/1.3136906
Mao M., Ye J., Wang H., Zhang J., Yang W.: Evaluation of excitation strategy with multi-plane electrical capacitance tomography sensor. Measurement Science and Technology 27, 2016, 114008. DOI: https://doi.org/10.1088/0957-0233/27/11/114008
Marashdeh Q. M., Teixeira F. L., Fan L.-S.: Adaptive Electrical Capacitance Volume Tomography. IEEE Sensors Journal 14, 2014, 1253–1259. DOI: https://doi.org/10.1109/JSEN.2013.2294533
Nurge M. A.: Electrical capacitance volume tomography with high contrast dielectrics using a cuboid sensor geometry. Measurement Science and Technology 18, 2007, 1511–1520. DOI: https://doi.org/10.1088/0957-0233/18/5/042
Olszewski T., Brzeski P., Mirkowski J., Plaskowski A., Smolik W. T., Szabatin R.: Capacitance tomograph – Design and preliminary results. Proc. 2rd International Symposium on Process Tomography in Poland, 2002, 159–168.
Rymarczyk T.: New methods to determine moisture areas by electrical impedance tomography. International Journal of Applied Electromagnetics and Mechanics 52(1-2), 2016, 79–87 DOI: https://doi.org/10.3233/JAE-162071
Rymarczyk T., Kłosowski G., Kozłowski E.: A Non-Destructive System Based on Electrical Tomography and Machine Learning to Analyze the Moisture of Buildings. Sensors 18(7), 2018, 2285 DOI: https://doi.org/10.3390/s18072285
Smolik W. T., Kryszyn J., Radzik B., Stosio M., Wróblewski P., Wanta D., Dańko Ł., Olszewski T., Szabatin R.: Single-shot high-voltage circuit for electrical capacitance tomography. Measurement Science and Technology 28, 2017, 025902. DOI: https://doi.org/10.1088/1361-6501/aa50e1
Soleimani M., Wang H., Li Y., Yang W.: A comparative study of three dimensional electrical capacitance tomography. International Journal for Information & Systems Sciences 3(2), 2007, 292–306.
Wajman R., Fiderek P., Fidos H., Jaworski T., Nowakowski J., Sankowski D., Banasiak R.: Metrological evaluation of a 3D electrical capacitance tomography measurement system for two-phase flow fraction determination. Measurement Science and Technology 24, 2013, 065302. DOI: https://doi.org/10.1088/0957-0233/24/6/065302
Wang A., Marashdeh Q. M., Teixeira F. L., Fan L.-S.: Electrical Capacitance Volume Tomography: a Comparison Between 12- and 24-Channels Sensor Systems. Progress in Electromagnetics Research M 41, 2015, 73–84. DOI: https://doi.org/10.2528/PIERM15011412
Wang B., Ji H., Huang Z., Li H.: A high-speed data acquisition system for ECT based on the differential sampling method. IEEE Sensors Journal 5, 2005, 308–311. DOI: https://doi.org/10.1109/JSEN.2004.842627
Wang F., Marashdeh Q., Fan L.-S., Warsito W.: Electrical Capacitance Volume Tomography: Design and Applications. Sensors 10, 2010, 1890–1917. DOI: https://doi.org/10.3390/s100301890
Wang Mi, Ma Yixin, Holliday N., Dai Yunfeng, Williams R. A., Lucas G.: A high-performance EIT system. IEEE Sensors Journal 5(2), 2005, 289–299. DOI: https://doi.org/10.1109/JSEN.2005.843904
Warsito W., Fan L.-S.: Development of 3-Dimensional Electrical Capacitance Tomography Based on Neural Network Multi-criterion Optimization Image Reconstruction. 3rd World Congress on Industrial Process Tomography, 2003.
Warsito W., Fan L.-S.: Dynamics of spiral bubble plume motion in the entrance region of bubble columns and three-phase fluidized beds using 3D ECT. Chemical Engineering Science 60, 2005, 6073–6084. DOI: https://doi.org/10.1016/j.ces.2005.01.033
Xu L., Zhou H., Cao Z.: A recursive least squares-based demodulator for electrical tomography. Review of Scientific Instruments 84, 2013, 044704. DOI: https://doi.org/10.1063/1.4799971
Yang W.: Design of electrical capacitance tomography sensors. Measurement Science and Technology 21, 2010, 042001. DOI: https://doi.org/10.1088/0957-0233/21/4/042001
Yang W. Q.: Hardware design of electrical capacitance tomography systems. Measurement Science and Technology 7, 1996, 225–232. DOI: https://doi.org/10.1088/0957-0233/7/3/003
Yang W. Q., Peng L.: Image reconstruction algorithms for electrical capacitance tomography. Measurement Science and Technology 14, 2003, R1–R13. DOI: https://doi.org/10.1088/0957-0233/14/1/201
Ye J., Mao M., Wang H., Yang W.: An evaluation of the rotation of electrodes in multi-plane electrical capacitance tomography sensors. Measurement Science and Technology 26, 2015, 125404. DOI: https://doi.org/10.1088/0957-0233/26/12/125404
York T. A., Phua T. N., Reichelt L., Pawlowski A., Kneer R.: A miniature electrical capacitance tomograph. Measurement Science and Technology 17, 2006, 2119–2129. DOI: https://doi.org/10.1088/0957-0233/17/8/010
Zeeshan Z., Teixeira F., Marashdeh Q.: Sensitivity map computation in adaptive electrical capacitance volume tomography with multielectrode excitations. Electronics Letters 51, 2015, 334–336. DOI: https://doi.org/10.1049/el.2014.3855
Zhao J., Zou X., Fu W.: Sensitivity Map Analysis of Adaptive Electrical Capacitance Volume Tomography Using Nonuniform Voltage Excitation Envelopes. IEEE Sensors Journal 17, 2017, 105–112. DOI: https://doi.org/10.1109/JSEN.2016.2620486
ECTsim3D web page, http://ectsim.ire.pw.edu.pl
Article Details
Abstract views: 670
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jacek Kryszyn, Warsaw University of Technology
Jacek Kryszyn was born in Warsaw, Poland, in 1986. He received his M.Sc. degree in electronics and computer engineering and the PhD degree from Warsaw University of Technology, Warsaw, Poland in 2012 and 2018, respectively. He is an assistant professor at the Institute of Radioelectronics and Multimedia Technology, Electronics and Information Technology Faculty, Warsaw University of Technology since 2019. His field of interest covers Electrical Capacitance Tomography, especially small capacitance measurement methods
Damian Wanta, Warsaw University of Technology
Damian Wanta was born in Starogard Gdański, Poland, in 1991. He received the M. Sc. degree in biomedical engineering from Warsaw University of Technology, Warsaw, Poland in 2016. He is PhD student in the Nuclear and Medical Electronics Division, Institute of Radioelectronics and Multimedia Technology, Electronics and Information Technology Faculty, Warsaw University of Technology. His current research interests include Imaging of Magnetic Nanoparticles, Electrical Capacitance Tomography and Partial Reconfiguration.
Waldemar T. Smolik, Warsaw University of Technology
Waldemar T. Smolik was born in Otwock, Poland, in 1966. He received the M.Sc., the Ph.D. and D.Sc. degrees in electronics engineering from Warsaw University of Technology, Warsaw, Poland in 1991, 1997 and 2014, respectively.
Since 2016, he is a Professor at the Institute of Radioelectronics and Multimedia Technology, Electronics and Information Technology Faculty, Warsaw University of Technology. His main research interests are computer engineering, computed tomography and medical imaging. He has published over 70 scientific papers.
