EVALUATION OF THE ELECTRICAL CAPACITANCE TOMOGRAPHY SYSTEM FOR MEASUREMENT USING 3D SENSOR


Abstract

Further tests of EVT4 data acquisition system for electrical capacitance tomography are presented. The modular system, which can have up to 32 channels with an individual analogue to digital converter, was designed to ensure small uncertainty of capacitance measurement at high speed of imaging. The system’s performance in the context of 3D imaging was experimentally verified. In particular, we show that the measurement of changes in capacitance due to a small change of an electric permittivity distribution for the most distant electrodes in a suitably designed 3D sensor is possible using our system. Cross-plane measurements together with the measurements for the pairs of most distant electrodes are essential for accurate reconstruction of 3D distributions. Due to sensitivity of capacitance measurements obtained in the hardware, the measurements for all electrode pairs can be used in the inverse problem – the system of equations can be extended. Although the numerical condition number of a matrix of such a system is high, image reconstruction is possible from the data obtained in our system. The results of 3D image reconstruction for simple test objects are shown.


Keywords

electrical capacitance tomography; image reconstruction; capacitance measurement; inverse problems; numerical stability

Banasiak R., Wajman R., Betiuk J., Soleimani M.: Feasibility study of dielectric permittivity inspection using a 3D capacitance CT method. NDT & E International 42, 2009, 316–322. DOI: https://doi.org/10.1016/j.ndteint.2008.12.003

Brzeski P., Mirkowski J., Olszewski T., Plaskowski A., Smolik W. T., Szabatin R.: Multichannel capacitance tomograph for dynamic process imaging. Optoelectronics Review 11(3), 2003, 175–180.

Cui Z., Wang H., Chen Z., Xu Y., Yang W.: A high-performance digital system for electrical capacitance tomography. Measurement Science and Technology 22, 2011, 055503. DOI: https://doi.org/10.1088/0957-0233/22/5/055503

Dyakowski T., Jeanmeure L. F., Jaworski A. J.: Applications of electrical tomography for gas-solids and liquid-solids flows – a review. Powder Technology 112, 2000, 174–192. DOI: https://doi.org/10.1016/S0032-5910(00)00292-8

Fan Z., Gao R. X.: A new sensing method for Electrical Capacitance Tomography. IEEE Instrumentation & Measurement Technology Conference Proceedings, 2010, 48–53. DOI: https://doi.org/10.1109/IMTC.2010.5488269

Hansen P. C.: Regularization Tools version 4.0 for Matlab 7.3. Numerical Algorithms 46, 2007, 189–194. DOI: https://doi.org/10.1007/s11075-007-9136-9

Hu X., Katsouros M., Yang W., Huang S.: Further analysis of charge/discharge capacitance measurement circuit used with tomography sensors. Sensors and Transducers 80(6), 2007, 1246–1256.

Huang S. M., Plaskowski A. B., Xie C. G., Beck M. S.: Capacitance-based tomographic flow imaging system. Electronics Letters 24(7), 1988, 418–419. DOI: https://doi.org/10.1049/el:19880283

Khan S., Manwaring P., Borsic A., Halter R. J.: FPGA-Based Voltage and Current Dual Drive System for High Frame Rate Electrical Impedance Tomography. IEEE Transactions on Medical Imaging 34, 2015, 888–901. DOI: https://doi.org/10.1109/TMI.2014.2367315

Kryszyn J., Smolik W. T., Radzik B., Olszewski T., Szabatin R.: Switchless charge-discharge circuit for electrical capacitance tomography. Measurement Science and Technology 25, 2014, 115009. DOI: https://doi.org/10.1088/0957-0233/25/11/115009

Kryszyn J., Smolik W. T., Szabatin R.: 3D image reconstruction in electrical capacitance tomography. 7th World Congress in Industrial Process Tomography, 2013, 411–419.

Kryszyn J., Wanta D., Smolik W. T.: Gain Adjustment for Signal-to-Noise Ratio Improvement in Electrical Capacitance Tomography System EVT4. IEEE Sensors Journal 17(24), 2017, 8107–8116. DOI: https://doi.org/10.1109/JSEN.2017.2744985

Kryszyn J., Wróblewski P., Stosio M., Wanta D., Olszewski T., Smolik W. T.: Architecture of EVT4 data acquisition system for electrical capacitance tomography. Measurement 101, 2017, 28–39. DOI: https://doi.org/10.1016/j.measurement.2017.01.020

Li Y., Holland D. J.: Fast and robust 3D electrical capacitance tomography. Measurement Science and Technology 24, 2013, 105406. DOI: https://doi.org/10.1088/0957-0233/24/10/105406

Li Y., Holland D. J.: Optimizing the geometry of three-dimensional electrical capacitance tomography sensors. IEEE Sensors Journal 15(3), 2015, 1567–1574. DOI: https://doi.org/10.1109/JSEN.2014.2363901

Liao A., Zhou Q., Zhang Y.: Application of 3D electrical capacitance tomography in probing anomalous blocks in water. Journal of Applied Geophysics 117, 2015, 91–103. DOI: https://doi.org/10.1016/j.jappgeo.2015.03.030

Lu D., Shao F., Guo Z.: A high voltage method for measuring low capacitance for tomography. Review of Scientific Instruments 80, 2009, 053704. DOI: https://doi.org/10.1063/1.3136906

Mao M., Ye J., Wang H., Zhang J., Yang W.: Evaluation of excitation strategy with multi-plane electrical capacitance tomography sensor. Measurement Science and Technology 27, 2016, 114008. DOI: https://doi.org/10.1088/0957-0233/27/11/114008

Marashdeh Q. M., Teixeira F. L., Fan L.-S.: Adaptive Electrical Capacitance Volume Tomography. IEEE Sensors Journal 14, 2014, 1253–1259. DOI: https://doi.org/10.1109/JSEN.2013.2294533

Nurge M. A.: Electrical capacitance volume tomography with high contrast dielectrics using a cuboid sensor geometry. Measurement Science and Technology 18, 2007, 1511–1520. DOI: https://doi.org/10.1088/0957-0233/18/5/042

Olszewski T., Brzeski P., Mirkowski J., Plaskowski A., Smolik W. T., Szabatin R.: Capacitance tomograph – Design and preliminary results. Proc. 2rd International Symposium on Process Tomography in Poland, 2002, 159–168.

Rymarczyk T.: New methods to determine moisture areas by electrical impedance tomography. International Journal of Applied Electromagnetics and Mechanics 52(1-2), 2016, 79–87 DOI: https://doi.org/10.3233/JAE-162071

Rymarczyk T., Kłosowski G., Kozłowski E.: A Non-Destructive System Based on Electrical Tomography and Machine Learning to Analyze the Moisture of Buildings. Sensors 18(7), 2018, 2285 DOI: https://doi.org/10.3390/s18072285

Smolik W. T., Kryszyn J., Radzik B., Stosio M., Wróblewski P., Wanta D., Dańko Ł., Olszewski T., Szabatin R.: Single-shot high-voltage circuit for electrical capacitance tomography. Measurement Science and Technology 28, 2017, 025902. DOI: https://doi.org/10.1088/1361-6501/aa50e1

Soleimani M., Wang H., Li Y., Yang W.: A comparative study of three dimensional electrical capacitance tomography. International Journal for Information & Systems Sciences 3(2), 2007, 292–306.

Wajman R., Fiderek P., Fidos H., Jaworski T., Nowakowski J., Sankowski D., Banasiak R.: Metrological evaluation of a 3D electrical capacitance tomography measurement system for two-phase flow fraction determination. Measurement Science and Technology 24, 2013, 065302. DOI: https://doi.org/10.1088/0957-0233/24/6/065302

Wang A., Marashdeh Q. M., Teixeira F. L., Fan L.-S.: Electrical Capacitance Volume Tomography: a Comparison Between 12- and 24-Channels Sensor Systems. Progress in Electromagnetics Research M 41, 2015, 73–84. DOI: https://doi.org/10.2528/PIERM15011412

Wang B., Ji H., Huang Z., Li H.: A high-speed data acquisition system for ECT based on the differential sampling method. IEEE Sensors Journal 5, 2005, 308–311. DOI: https://doi.org/10.1109/JSEN.2004.842627

Wang F., Marashdeh Q., Fan L.-S., Warsito W.: Electrical Capacitance Volume Tomography: Design and Applications. Sensors 10, 2010, 1890–1917. DOI: https://doi.org/10.3390/s100301890

Wang Mi, Ma Yixin, Holliday N., Dai Yunfeng, Williams R. A., Lucas G.: A high-performance EIT system. IEEE Sensors Journal 5(2), 2005, 289–299. DOI: https://doi.org/10.1109/JSEN.2005.843904

Warsito W., Fan L.-S.: Development of 3-Dimensional Electrical Capacitance Tomography Based on Neural Network Multi-criterion Optimization Image Reconstruction. 3rd World Congress on Industrial Process Tomography, 2003.

Warsito W., Fan L.-S.: Dynamics of spiral bubble plume motion in the entrance region of bubble columns and three-phase fluidized beds using 3D ECT. Chemical Engineering Science 60, 2005, 6073–6084. DOI: https://doi.org/10.1016/j.ces.2005.01.033

Xu L., Zhou H., Cao Z.: A recursive least squares-based demodulator for electrical tomography. Review of Scientific Instruments 84, 2013, 044704. DOI: https://doi.org/10.1063/1.4799971

Yang W.: Design of electrical capacitance tomography sensors. Measurement Science and Technology 21, 2010, 042001. DOI: https://doi.org/10.1088/0957-0233/21/4/042001

Yang W. Q.: Hardware design of electrical capacitance tomography systems. Measurement Science and Technology 7, 1996, 225–232. DOI: https://doi.org/10.1088/0957-0233/7/3/003

Yang W. Q., Peng L.: Image reconstruction algorithms for electrical capacitance tomography. Measurement Science and Technology 14, 2003, R1–R13. DOI: https://doi.org/10.1088/0957-0233/14/1/201

Ye J., Mao M., Wang H., Yang W.: An evaluation of the rotation of electrodes in multi-plane electrical capacitance tomography sensors. Measurement Science and Technology 26, 2015, 125404. DOI: https://doi.org/10.1088/0957-0233/26/12/125404

York T. A., Phua T. N., Reichelt L., Pawlowski A., Kneer R.: A miniature electrical capacitance tomograph. Measurement Science and Technology 17, 2006, 2119–2129. DOI: https://doi.org/10.1088/0957-0233/17/8/010

Zeeshan Z., Teixeira F., Marashdeh Q.: Sensitivity map computation in adaptive electrical capacitance volume tomography with multielectrode excitations. Electronics Letters 51, 2015, 334–336. DOI: https://doi.org/10.1049/el.2014.3855

Zhao J., Zou X., Fu W.: Sensitivity Map Analysis of Adaptive Electrical Capacitance Volume Tomography Using Nonuniform Voltage Excitation Envelopes. IEEE Sensors Journal 17, 2017, 105–112. DOI: https://doi.org/10.1109/JSEN.2016.2620486

ECTsim3D web page, http://ectsim.ire.pw.edu.pl

Download

Published : 2019-12-15


Kryszyn, J., Wanta, D., & Smolik, W. T. (2019). EVALUATION OF THE ELECTRICAL CAPACITANCE TOMOGRAPHY SYSTEM FOR MEASUREMENT USING 3D SENSOR. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 9(4), 52-59. https://doi.org/10.35784/iapgos.205

Jacek Kryszyn 
Warsaw University of Technology  Poland
https://orcid.org/0000-0002-0042-0473

Jacek Kryszyn was born in Warsaw, Poland, in 1986. He received his M.Sc. degree in electronics and computer engineering and the PhD degree from Warsaw University of Technology, Warsaw, Poland in 2012 and 2018, respectively. He is an assistant professor at the Institute of Radioelectronics and Multimedia Technology, Electronics and Information Technology Faculty, Warsaw University of Technology since 2019. His field of interest covers Electrical Capacitance Tomography, especially small capacitance measurement methods


Damian Wanta  dwanta@ire.pw.edu.pl
Warsaw University of Technology  Poland
https://orcid.org/0000-0002-1596-6524

Damian Wanta was born in Starogard Gdański, Poland, in 1991. He received the M. Sc. degree in biomedical engineering from Warsaw University of Technology, Warsaw, Poland in 2016.  He is PhD student in the Nuclear and Medical Electronics Division, Institute of Radioelectronics and Multimedia Technology, Electronics and Information Technology Faculty, Warsaw University of Technology. His current research interests include Imaging of Magnetic Nanoparticles, Electrical Capacitance Tomography and Partial Reconfiguration.


Waldemar T. Smolik 
Warsaw University of Technology  Poland
https://orcid.org/0000-0002-1524-5049

Waldemar T. Smolik was born in Otwock, Poland, in 1966. He received the M.Sc., the Ph.D. and D.Sc. degrees in electronics engineering from Warsaw University of Technology, Warsaw, Poland in 1991, 1997 and 2014, respectively.

Since 2016, he is a Professor at the Institute of Radioelectronics and Multimedia Technology, Electronics and Information Technology Faculty, Warsaw University of Technology. His main research interests are computer engineering, computed tomography and medical imaging. He has published over 70 scientific papers.