ANALYSIS OF HEAT TRANSFER IN BUILDING PARTITIONS WITH THE USE OF COMPUTATIONAL FLUID DYNAMICS TOOLS

Arkadiusz Urzędowski


Lublin University of Technology, Fundamentals of Technology Faculty, Lublin, Poland (Poland)
http://orcid.org/0000-0002-0440-3013

Joanna Styczeń

j.styczen@pollub.pl
Lublin University of Technology, Department of Electronics and Information Technology, Lublin, Poland (Poland)
http://orcid.org/0000-0001-7325-5045

Magdalena Paśnikowska-Łukaszuk


Lublin University of Technology, Fundamentals of Technology Faculty, Lublin, Poland (Poland)
http://orcid.org/0000-0002-3479-6188

Abstract

The article presents the mechanisms of heat exchange in building partitions along with a description of the phenomena occurring there. The methods of heat transport on selected examples of the construction of sandwich building walls were presented and discussed. A review of the methods allowing to determine the heat flux value by means of analytical methods and simulations based on numerical analyzes was carried out. The methodology of solving thermal problems has been presented, indicating the complexity of the phenomena occurring at the contact points of surfaces, for which the correct characteristics should be selected in more than one selected form of determining temperature distributions. Heat transport simulation was performed in ANSYS Fluent 2020 R2 software. The value of the heat flux density flowing through the outer wall of a single-family house located in Lublin, Poland was analytically determined. Three different structural wall solutions were adopted: one, two and three-layer. The obtained results were presented in a tabular manner, allowing for a clear verification of the correctness of the calculations performed with both selected methods.


Keywords:

CFD, heat flux, heat transfer in multilayer walls

Barnat-Hunek D., Lagod G., Klimek B.: Evaluation of the contact angle and frost resistance of hydrophobised heat-insulating mortars with polystyrene. AIP Conference Proceedings 1866, 2017, 040004.
DOI: https://doi.org/10.1063/1.4994484   Google Scholar

Chong H., Wang H., Li E.: Update-grid reanalysis method based on NS-FEM for 3D heat transfer problems. Eng. Anal. Bound. Elem. 95/2018, 142–153, https://doi.org/10.1016/j.enganabound.2018.07.010].
DOI: https://doi.org/10.1016/j.enganabound.2018.07.010   Google Scholar

Dz.U. 2013 poz. 926.: Rozporządzenie Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r.
  Google Scholar

Furmański P., Domański R.: Wymiana ciepła. Przykłady obliczeń i zadania. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2002.
  Google Scholar

Li Z. C., Cui X. Y., Cai Y.: Analysis of heat transfer problems using a novel low-order FEM based on gradient weighted operation. Int. J. Therm. Sci. 132/2018, 52–64, [https://doi.org/10.1016/j.ijthermalsci.2018.05.039].
DOI: https://doi.org/10.1016/j.ijthermalsci.2018.05.039   Google Scholar

PN-82 / B-02402.: Ogrzewnictwo - Temperatury ogrzewanych pomieszczeń w budynkach.
  Google Scholar

PN-EN 12831:2006.: Instalacje ogrzewcze w budynkach. Metoda obliczania projektowego obciążenia cieplnego.
  Google Scholar

PN-EN ISO 6946.: Komponenty budowlane i elementy budynku Opór cieplny i współczynnik przenikania ciepła Metoda obliczania.
  Google Scholar

Raczkowski A., Suchorab Z., Czechowska-Kosacka A.: Computational fluid dynamics simulation of an earth-air heat exchanger for ventilation system, AIP Conference Proceedings 1866, 2017, 040032.
DOI: https://doi.org/10.1063/1.4994512   Google Scholar

Saleem A., Farooq S., Karimi I. A., Banerjee R.: Wall superheat at the incipient nucleate boiling condition for natural and forced convection: A CFD approach, Comput. Chem. Eng. 134/2020, 106718, [https://doi.org/10.1016/j.compchemeng.2019.106718].
DOI: https://doi.org/10.1016/j.compchemeng.2019.106718   Google Scholar

Sheikholeslami M., Ghasemi A.: Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int. J. Heat Mass Transf. 123/2018, 418–431.
DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.095   Google Scholar

Takabatake K., Sakai M.: Flexible discretization technique for DEM-CFD simulations including thin walls. Adv. Powder Technol. 31(5)/2020, 1825–1837, [https://doi.org/10.1016/j.apt.2020.02.017].
DOI: https://doi.org/10.1016/j.apt.2020.02.017   Google Scholar

Wiśniewski S., Wiśniewski T. S.: Wymiana ciepła. Wydawnictwa Naukowo-Techniczne, Warszawa 2000.
  Google Scholar

Wójcicka–Migasiuk D.: Analiza wymiany ciepła w ścianach słonecznych. Lubelskie Towarzystwo Naukowe, Lublin 2008.
  Google Scholar

Żenczykowski W.: Budownictwo ogólne. Problemy fizyki budowli i instalacje. Arkady, Częstochowa 1987.
  Google Scholar

Download


Published
2020-09-30

Cited by

Urzędowski, A., Styczeń, J. ., & Paśnikowska-Łukaszuk , M. (2020). ANALYSIS OF HEAT TRANSFER IN BUILDING PARTITIONS WITH THE USE OF COMPUTATIONAL FLUID DYNAMICS TOOLS . Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 10(3), 48–51. https://doi.org/10.35784/iapgos.2168

Authors

Arkadiusz Urzędowski 

Lublin University of Technology, Fundamentals of Technology Faculty, Lublin, Poland Poland
http://orcid.org/0000-0002-0440-3013

Authors

Joanna Styczeń 
j.styczen@pollub.pl
Lublin University of Technology, Department of Electronics and Information Technology, Lublin, Poland Poland
http://orcid.org/0000-0001-7325-5045

Authors

Magdalena Paśnikowska-Łukaszuk  

Lublin University of Technology, Fundamentals of Technology Faculty, Lublin, Poland Poland
http://orcid.org/0000-0002-3479-6188

Statistics

Abstract views: 369
PDF downloads: 228