Delafossite AgFeO2, AgFe0.9Al0.1O2, AgFe0.9Ni0.1O2, and AgFe0.9Co0.1O2 powders were synthesized by hydrothermal method. The structural analysis and hyperfine interactions investigations were performed by X-ray diffraction and the Mössbauer spectroscopy. It was found that the (Al, Ni, Co)-doped delafossite phases with traces of metallic silver can be obtained during hydrothermal synthesis. Investigations revealed that the type of the incorporated element has an impact on the structural properties of the obtained delafossites. However, doping of cobalt, nickel, and alumina ions to the AgFeO2 delafossite structure does not cause significant changes in the values of the hyperfine interactions parameters. The of the Mössbauer spectra confirm the paramagnetic character of the obtained compounds at room temperature.


delafossites; hydrothermal synthesis; X-ray diffraction; Mössbauer spectroscopy

Abdelhamid H. N.: Delafossite Nanoparticle as New Functional Materials: Advances in Energy, Nanomedicine and Environmental Applications. Materials Science Forum 832, 2015, 28–53. DOI: https://doi.org/10.4028/www.scientific.net/MSF.832.28

Daniel U., Dabici A., Iuliana S., Miclau M.: Photovoltaic Performance of Co-Doped CuCrO2 for p-Type Dye-Sensitized Solar Cells Application. Energy Procedia 112, 2017 497–503. DOI: https://doi.org/10.1016/j.egypro.2017.03.1129

Dong C. J., Yu W. X., Xu M., Cao J. J., Zhang Y., Chuai Y. H., Wang Y. D.: Evidence of Room Temperature Ferromagnetism in Co-Doped Transparent CuAlO2 Semiconductor. Journal of Alloys and Compounds 512, 2012 195–98. DOI: https://doi.org/10.1016/j.jallcom.2011.09.062

El-Bassuony A. A. H., Abdelsalam H. K.: Attractive Improvement in Structural, Magnetic, Optical, and Antimicrobial Activity of Silver Delafossite by Fe/Cr Doping. Journal of Superconductivity and Novel Magnetism 31, 2018, 3691–3703. DOI: https://doi.org/10.1007/s10948-018-4627-6

Elkhouni T., Amami M., Colin C. V., Strobel P., Salah A. B: Synthesis, Structural and Magnetic Studies of the CuCr1−xCoxO2 Delafossite Oxide. Journal of Magnetism and Magnetic Materials 330, 2013, 101–105. DOI: https://doi.org/10.1016/j.jmmm.2012.10.037

Elkhouni T., Amami M., Colin C. V., Salah A. B: Structural and Magnetoelectric Interactions of (Ca, Mg)-Doped Polycrystalline Multiferroic CuFeO2. Materials Research Bulletin 53, 2014, 151–57. DOI: https://doi.org/10.1016/j.materresbull.2014.01.035

Gall R. B., Ashmore N., Marquardt M. A., Tan X., Cann D. P.: Synthesis, Microstructure, and Electrical Properties of the Delafossite Compound CuGaO2. Journal of Alloys and Compounds 391, 2005, 262–66. DOI: https://doi.org/10.1016/j.jallcom.2004.08.070

Khomskii D. I.: Classifying Multiferroics: Mechanisms and Effects. Physics 2, 2009, 1–7. DOI: https://doi.org/10.1103/Physics.2.20

Khomskii D. I.: Ferroelectrics, Magnetoelectrics, and Multiferroics. In Transition Metal Compounds. Cambridge University Press, Cambridge 2014, 269–309. DOI: https://doi.org/10.1017/CBO9781139096782.009

Presniakov I., Rusakov V., Sobolev A., Gapchka A., Matsnev M., Belik A. A.: 57Fe Mössbauer Study of New Multiferroic AgFeO2. Hyperfine Interactions 226, 2014, 41–50. DOI: https://doi.org/10.1007/s10751-013-0948-9

Prewitt C. T., Robert D. S., Rogers D. B.: Chemistry of Noble Metal Oxides. II. Crystal Structures of Platinum Cobalt Dioxide, Palladium Cobalt Dioxide, Copper Iron Dioxide, and Silver Iron Dioxide. Inorganic Chemistry 10, 1971, 719–723. DOI: https://doi.org/10.1021/ic50098a012

Ray N., Gupta V., Sarma L., Kush P., Nag J., Sapra S.: Tuning the Electronic and Magnetic Properties of CuAlO2 Nanocrystals Using Magnetic Dopants. ACS Omega 3, 2018, 509–513. DOI: https://doi.org/10.1021/acsomega.7b01690

Sato K., Katayama-Yoshida H.: First Principles Materials Design for Semiconductor Spintronics. Semiconductor Science and Technology 17, 2002, 367–76. DOI: https://doi.org/10.1088/0268-1242/17/4/309

Shannon R. D.: Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica: Section A 32, 1976 751–767.

Shannon R. D., Rogers D. B., Prewitt C. T.: Chemistry of Noble Metal Oxides. I. Syntheses and Properties of ABO2 Delafossite Compounds. Inorganic Chemistry 10, 1971, 713–718. DOI: https://doi.org/10.1021/ic50098a011

Sheets W. C., Stampler E. S., Bertoni M. I., Sasaki M., Marks T. J., Mason T. O., Poepplemeier K. R.: Silver Delafossite Oxides. Inorganic Chemistry 47, 2008, 2696–2705. DOI: https://doi.org/10.1021/ic702197h

Siedliska K., Pikula T., Franus W., Jartych E.: X-Ray Diffraction and 57Fe Mössbauer Spectroscopy Studies of Co-Doped AgFeO2. Acta Physica Polonica A 134, 2018, 1040–1043. DOI: https://doi.org/10.12693/APhysPolA.134.1040

Siedliska K., Pikula T., Surowiec Z., Chocyk D., Jartych E.: X-ray Diffraction and 57Fe Mössbauer Spectroscopy Studies of Delafossite AgFeO2 Prepared by Co-Precipitation Method. Journal of Alloys and Compounds 690, 2017, 182–188. DOI: https://doi.org/10.1016/j.jallcom.2016.08.092

Taddee C., Kamwanna T., Amornkitbamrung V.: Characterization of Transparent Superconductivity Fe-doped CuCrO2 Delafossite Oxide. Applied Surface Science 380, 2016, 237–242. DOI: https://doi.org/10.1016/j.apsusc.2016.01.120

Wheatley R. A., Roble M., Gence L., Acuna C., Rojas-Aedo R., Hidalgo-Rojas D., Guzmann-De La Creda D. E., Vojkovic S., Seifert B., Volkmann U. G., Diaz-Droguett D. E.: Structural, Optoelectronic and Photo-Thermoelectric Properties of Crystalline Alloy CuAlxFe1-XO2 Delafossite Oxide Materials. Journal of Alloys and Compounds, 2020, in press. DOI: https://doi.org/10.1016/j.jallcom.2020.157613

Zhao Y., An H., Dong G., Feng J., Wei T., Ren Y., Ma J.: Oxygen Vacancies Induced Heterogeneous Catalysis of Peroxymonosulfate by Ni-Doped AgFeO2 Materials: Evolution of Reactive Oxygen Species and Mechanism. Chemical Engineering Journal 388, 2020, 124371. DOI: https://doi.org/10.1016/j.cej.2020.124371

Zwiener L., Jones T., Wolf E. H., Girgdies F., Plodinec M., Klyushin A. Y., Willinger E., Rosowski F., Schogl R., Frei E.: Synthesis and Characterization of Ag-Delafossites AgBO2 (B : Al, Ga, In) from a Rapid Hydrothermal Process. European Journal of Inorganic Chemistry 18, 2019, 2333–2345. DOI: https://doi.org/10.1002/ejic.201900052


Published : 2020-12-20

Siedliska, K. (2020). X-RAY DIFFRACTION AND MÖSSBAUER SPECTROSCOPY INVESTIGATIONS OF THE (Al, Ni, Co)-DOPED AgFeO2 SYNTHESIZED BY HYDROTHERMAL METHOD. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 10(4), 15-18. https://doi.org/10.35784/iapgos.2346

Karolina Siedliska  k.siedliska@pollub.pl
Lublin Univeristy of Technology, Department of Electronics and Computer Science  Poland