X-RAY DIFFRACTION AND MÖSSBAUER SPECTROSCOPY INVESTIGATIONS OF THE (Al, Ni, Co)-DOPED AgFeO2 SYNTHESIZED BY HYDROTHERMAL METHOD
Article Sidebar
Open full text
Issue Vol. 10 No. 4 (2020)
-
MODELING ELECTROMAGNETIC NANOSTRUCTURES AND EXPERIMENTING WITH NANOELECTRIC ELEMENTS TO FORM PERIODIC STRUCTURES
Miloslav Steinbauer, Roman Pernica, Jiri Zukal, Radim Kadlec, Tibor Bachorec, Pavel Fiala4-14
-
X-RAY DIFFRACTION AND MÖSSBAUER SPECTROSCOPY INVESTIGATIONS OF THE (Al, Ni, Co)-DOPED AgFeO2 SYNTHESIZED BY HYDROTHERMAL METHOD
Karolina Siedliska15-18
-
COMPUTER PREDICTION OF TECHNOLOGICAL REGIMES OF RAPID CONE-SHAPED ADSORPTION FILTERS WITH CHEMICAL REGENERATION OF HOMOGENEOUS POROUS LOADS
Andrii Bomba, Yurii Klymyuk, Ihor Prysіazhnіuk19-24
-
FREQUENCY RESPONSE OF NORRIS GAP DERIVATIVES AND ITS PROSPERITIES FOR GAS SPECTRA ANALYSIS
Sławomir Cięszczyk25-28
-
BIT ERROR NOTIFICATION AND ESTIMATION IN REDUNDANT SUCCESSIVE-APPROXIMATION ADC
Serhii Zakharchenko , Roman Humeniuk29-32
-
DEVELOPMENT OF A MODULAR LIGHT-WEIGHT MANIPULATOR FOR HUMAN-ROBOT INTERACTION IN MEDICAL APPLICATIONS
Adam Kurnicki, Bartłomiej Stańczyk33-37
-
TAKING INTO ACCOUNT THE PHASE INSTABILITY OF GENERATORS CAUSED BY THE INFLUENCE OF IONIZING RADIATION OF SPACE ON THE PARAMETERS OF CARRIER FREQUENCY SYNCHRONIZATION SYSTEMS
Oleksandr Turovsky, Sergei Panadiy38-42
-
MULTI-CHANNEL DIGITAL-ANALOG SYSTEM BASED ON CURRENT-CURRENT CONVERTERS
Olexiy Azarov, Yevhenii Heneralnytskyi, Nataliia Rybko43-46
-
A COMPUTER SYSTEM FOR ACQUISITION AND ANALYSIS OF MEASUREMENT DATA FOR A SKEW ROLLING MILL IN MANUFACTURING STEEL BALLS
Marcin Buczaj, Andrzej Sumorek47-50
-
RESEARCH ON A MAGNETIC FIELD SENSOR WITH A FREQUENCY OUTPUT SIGNAL BASED ON A TUNNEL-RESONANCE DIODE
Alexander Osadchuk, Vladimir Osadchuk, Iaroslav Osadchuk51-56
-
DIGITAL CONTACT POTENTIAL PROBE IN STUDYING THE DEFORMATION OF DIELECTRIC MATERIALS
Kanstantsin Pantsialeyeu, Anatoly Zharin, Oleg Gusev, Roman Vorobey, Andrey Tyavlovsky, Konstantin Tyavlovsky, Aliaksandr Svistun57-60
-
OVERVIEW OF AOI USE IN SURFACE-MOUNT TECHNOLOGY CONTROL
Magdalena Michalska61-64
-
AN ELECTRICALLY-CONTROLLED AXIAL-FLUX PERMANENT MAGNET GENERATOR
Piotr Paplicki, Paweł Prajzendanc, Marcin Wardach65-68
-
METHOD OF DETERMINING THE COP COEFFICIENT FOR A COOLING SYSTEM
Mariusz Rzasa, Sławomir Pochwała, Sławomir Szymaniec69-72
-
THE IMPACT OF DIGITAL PHOTOGRAPHY PROCESSING IN MOBILE APPLICATIONS ON THE QUALITY OF REACH IN SOCIAL MEDIA
Magdalena Paśnikowska-Łukaszuk, Arkadiusz Urzędowski73-76
-
USE OF WEB 2.0 TOOLS BY POLISH HEALTH PORTALS
Magdalena Czerwinska77-82
Archives
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
-
Vol. 8 No. 4
2018-12-16 16
-
Vol. 8 No. 3
2018-09-25 16
-
Vol. 8 No. 2
2018-05-30 18
-
Vol. 8 No. 1
2018-02-28 18
Main Article Content
DOI
Authors
Abstract
Delafossite AgFeO2, AgFe0.9Al0.1O2, AgFe0.9Ni0.1O2, and AgFe0.9Co0.1O2 powders were synthesized by hydrothermal method. The structural analysis and hyperfine interactions investigations were performed by X-ray diffraction and the Mössbauer spectroscopy. It was found that the (Al, Ni, Co)-doped delafossite phases with traces of metallic silver can be obtained during hydrothermal synthesis. Investigations revealed that the type of the incorporated element has an impact on the structural properties of the obtained delafossites. However, doping of cobalt, nickel, and alumina ions to the AgFeO2 delafossite structure does not cause significant changes in the values of the hyperfine interactions parameters. The of the Mössbauer spectra confirm the paramagnetic character of the obtained compounds at room temperature.
Keywords:
References
Abdelhamid H. N.: Delafossite Nanoparticle as New Functional Materials: Advances in Energy, Nanomedicine and Environmental Applications. Materials Science Forum 832, 2015, 28–53. DOI: https://doi.org/10.4028/www.scientific.net/MSF.832.28
Daniel U., Dabici A., Iuliana S., Miclau M.: Photovoltaic Performance of Co-Doped CuCrO2 for p-Type Dye-Sensitized Solar Cells Application. Energy Procedia 112, 2017 497–503. DOI: https://doi.org/10.1016/j.egypro.2017.03.1129
Dong C. J., Yu W. X., Xu M., Cao J. J., Zhang Y., Chuai Y. H., Wang Y. D.: Evidence of Room Temperature Ferromagnetism in Co-Doped Transparent CuAlO2 Semiconductor. Journal of Alloys and Compounds 512, 2012 195–98. DOI: https://doi.org/10.1016/j.jallcom.2011.09.062
El-Bassuony A. A. H., Abdelsalam H. K.: Attractive Improvement in Structural, Magnetic, Optical, and Antimicrobial Activity of Silver Delafossite by Fe/Cr Doping. Journal of Superconductivity and Novel Magnetism 31, 2018, 3691–3703. DOI: https://doi.org/10.1007/s10948-018-4627-6
Elkhouni T., Amami M., Colin C. V., Strobel P., Salah A. B: Synthesis, Structural and Magnetic Studies of the CuCr1−xCoxO2 Delafossite Oxide. Journal of Magnetism and Magnetic Materials 330, 2013, 101–105. DOI: https://doi.org/10.1016/j.jmmm.2012.10.037
Elkhouni T., Amami M., Colin C. V., Salah A. B: Structural and Magnetoelectric Interactions of (Ca, Mg)-Doped Polycrystalline Multiferroic CuFeO2. Materials Research Bulletin 53, 2014, 151–57. DOI: https://doi.org/10.1016/j.materresbull.2014.01.035
Gall R. B., Ashmore N., Marquardt M. A., Tan X., Cann D. P.: Synthesis, Microstructure, and Electrical Properties of the Delafossite Compound CuGaO2. Journal of Alloys and Compounds 391, 2005, 262–66. DOI: https://doi.org/10.1016/j.jallcom.2004.08.070
Khomskii D. I.: Classifying Multiferroics: Mechanisms and Effects. Physics 2, 2009, 1–7. DOI: https://doi.org/10.1103/Physics.2.20
Khomskii D. I.: Ferroelectrics, Magnetoelectrics, and Multiferroics. In Transition Metal Compounds. Cambridge University Press, Cambridge 2014, 269–309. DOI: https://doi.org/10.1017/CBO9781139096782.009
Presniakov I., Rusakov V., Sobolev A., Gapchka A., Matsnev M., Belik A. A.: 57Fe Mössbauer Study of New Multiferroic AgFeO2. Hyperfine Interactions 226, 2014, 41–50. DOI: https://doi.org/10.1007/s10751-013-0948-9
Prewitt C. T., Robert D. S., Rogers D. B.: Chemistry of Noble Metal Oxides. II. Crystal Structures of Platinum Cobalt Dioxide, Palladium Cobalt Dioxide, Copper Iron Dioxide, and Silver Iron Dioxide. Inorganic Chemistry 10, 1971, 719–723. DOI: https://doi.org/10.1021/ic50098a012
Ray N., Gupta V., Sarma L., Kush P., Nag J., Sapra S.: Tuning the Electronic and Magnetic Properties of CuAlO2 Nanocrystals Using Magnetic Dopants. ACS Omega 3, 2018, 509–513. DOI: https://doi.org/10.1021/acsomega.7b01690
Sato K., Katayama-Yoshida H.: First Principles Materials Design for Semiconductor Spintronics. Semiconductor Science and Technology 17, 2002, 367–76. DOI: https://doi.org/10.1088/0268-1242/17/4/309
Shannon R. D.: Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica: Section A 32, 1976 751–767.
Shannon R. D., Rogers D. B., Prewitt C. T.: Chemistry of Noble Metal Oxides. I. Syntheses and Properties of ABO2 Delafossite Compounds. Inorganic Chemistry 10, 1971, 713–718. DOI: https://doi.org/10.1021/ic50098a011
Sheets W. C., Stampler E. S., Bertoni M. I., Sasaki M., Marks T. J., Mason T. O., Poepplemeier K. R.: Silver Delafossite Oxides. Inorganic Chemistry 47, 2008, 2696–2705. DOI: https://doi.org/10.1021/ic702197h
Siedliska K., Pikula T., Franus W., Jartych E.: X-Ray Diffraction and 57Fe Mössbauer Spectroscopy Studies of Co-Doped AgFeO2. Acta Physica Polonica A 134, 2018, 1040–1043. DOI: https://doi.org/10.12693/APhysPolA.134.1040
Siedliska K., Pikula T., Surowiec Z., Chocyk D., Jartych E.: X-ray Diffraction and 57Fe Mössbauer Spectroscopy Studies of Delafossite AgFeO2 Prepared by Co-Precipitation Method. Journal of Alloys and Compounds 690, 2017, 182–188. DOI: https://doi.org/10.1016/j.jallcom.2016.08.092
Taddee C., Kamwanna T., Amornkitbamrung V.: Characterization of Transparent Superconductivity Fe-doped CuCrO2 Delafossite Oxide. Applied Surface Science 380, 2016, 237–242. DOI: https://doi.org/10.1016/j.apsusc.2016.01.120
Wheatley R. A., Roble M., Gence L., Acuna C., Rojas-Aedo R., Hidalgo-Rojas D., Guzmann-De La Creda D. E., Vojkovic S., Seifert B., Volkmann U. G., Diaz-Droguett D. E.: Structural, Optoelectronic and Photo-Thermoelectric Properties of Crystalline Alloy CuAlxFe1-XO2 Delafossite Oxide Materials. Journal of Alloys and Compounds, 2020, in press. DOI: https://doi.org/10.1016/j.jallcom.2020.157613
Zhao Y., An H., Dong G., Feng J., Wei T., Ren Y., Ma J.: Oxygen Vacancies Induced Heterogeneous Catalysis of Peroxymonosulfate by Ni-Doped AgFeO2 Materials: Evolution of Reactive Oxygen Species and Mechanism. Chemical Engineering Journal 388, 2020, 124371. DOI: https://doi.org/10.1016/j.cej.2020.124371
Zwiener L., Jones T., Wolf E. H., Girgdies F., Plodinec M., Klyushin A. Y., Willinger E., Rosowski F., Schogl R., Frei E.: Synthesis and Characterization of Ag-Delafossites AgBO2 (B : Al, Ga, In) from a Rapid Hydrothermal Process. European Journal of Inorganic Chemistry 18, 2019, 2333–2345. DOI: https://doi.org/10.1002/ejic.201900052
Article Details
Abstract views: 430
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
