RESEARCH ON A MAGNETIC FIELD SENSOR WITH A FREQUENCY OUTPUT SIGNAL BASED ON A TUNNEL-RESONANCE DIODE
Article Sidebar
Open full text
Issue Vol. 10 No. 4 (2020)
-
MODELING ELECTROMAGNETIC NANOSTRUCTURES AND EXPERIMENTING WITH NANOELECTRIC ELEMENTS TO FORM PERIODIC STRUCTURES
Miloslav Steinbauer, Roman Pernica, Jiri Zukal, Radim Kadlec, Tibor Bachorec, Pavel Fiala4-14
-
X-RAY DIFFRACTION AND MÖSSBAUER SPECTROSCOPY INVESTIGATIONS OF THE (Al, Ni, Co)-DOPED AgFeO2 SYNTHESIZED BY HYDROTHERMAL METHOD
Karolina Siedliska15-18
-
COMPUTER PREDICTION OF TECHNOLOGICAL REGIMES OF RAPID CONE-SHAPED ADSORPTION FILTERS WITH CHEMICAL REGENERATION OF HOMOGENEOUS POROUS LOADS
Andrii Bomba, Yurii Klymyuk, Ihor Prysіazhnіuk19-24
-
FREQUENCY RESPONSE OF NORRIS GAP DERIVATIVES AND ITS PROSPERITIES FOR GAS SPECTRA ANALYSIS
Sławomir Cięszczyk25-28
-
BIT ERROR NOTIFICATION AND ESTIMATION IN REDUNDANT SUCCESSIVE-APPROXIMATION ADC
Serhii Zakharchenko , Roman Humeniuk29-32
-
DEVELOPMENT OF A MODULAR LIGHT-WEIGHT MANIPULATOR FOR HUMAN-ROBOT INTERACTION IN MEDICAL APPLICATIONS
Adam Kurnicki, Bartłomiej Stańczyk33-37
-
TAKING INTO ACCOUNT THE PHASE INSTABILITY OF GENERATORS CAUSED BY THE INFLUENCE OF IONIZING RADIATION OF SPACE ON THE PARAMETERS OF CARRIER FREQUENCY SYNCHRONIZATION SYSTEMS
Oleksandr Turovsky, Sergei Panadiy38-42
-
MULTI-CHANNEL DIGITAL-ANALOG SYSTEM BASED ON CURRENT-CURRENT CONVERTERS
Olexiy Azarov, Yevhenii Heneralnytskyi, Nataliia Rybko43-46
-
A COMPUTER SYSTEM FOR ACQUISITION AND ANALYSIS OF MEASUREMENT DATA FOR A SKEW ROLLING MILL IN MANUFACTURING STEEL BALLS
Marcin Buczaj, Andrzej Sumorek47-50
-
RESEARCH ON A MAGNETIC FIELD SENSOR WITH A FREQUENCY OUTPUT SIGNAL BASED ON A TUNNEL-RESONANCE DIODE
Alexander Osadchuk, Vladimir Osadchuk, Iaroslav Osadchuk51-56
-
DIGITAL CONTACT POTENTIAL PROBE IN STUDYING THE DEFORMATION OF DIELECTRIC MATERIALS
Kanstantsin Pantsialeyeu, Anatoly Zharin, Oleg Gusev, Roman Vorobey, Andrey Tyavlovsky, Konstantin Tyavlovsky, Aliaksandr Svistun57-60
-
OVERVIEW OF AOI USE IN SURFACE-MOUNT TECHNOLOGY CONTROL
Magdalena Michalska61-64
-
AN ELECTRICALLY-CONTROLLED AXIAL-FLUX PERMANENT MAGNET GENERATOR
Piotr Paplicki, Paweł Prajzendanc, Marcin Wardach65-68
-
METHOD OF DETERMINING THE COP COEFFICIENT FOR A COOLING SYSTEM
Mariusz Rzasa, Sławomir Pochwała, Sławomir Szymaniec69-72
-
THE IMPACT OF DIGITAL PHOTOGRAPHY PROCESSING IN MOBILE APPLICATIONS ON THE QUALITY OF REACH IN SOCIAL MEDIA
Magdalena Paśnikowska-Łukaszuk, Arkadiusz Urzędowski73-76
-
USE OF WEB 2.0 TOOLS BY POLISH HEALTH PORTALS
Magdalena Czerwinska77-82
Archives
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
-
Vol. 8 No. 4
2018-12-16 16
-
Vol. 8 No. 3
2018-09-25 16
-
Vol. 8 No. 2
2018-05-30 18
-
Vol. 8 No. 1
2018-02-28 18
Main Article Content
DOI
Authors
Abstract
Based on the consideration of physical processes in a tunnel-resonant diode under the action of a magnetic field, the construction of an autogenerating magnetic field sensor with a frequency output signal is proposed. The use of devices with negative differential resistance makes it possible to significantly simplify the design of magnetic field sensors in the entire RF frequency range. Depending on the operating modes of the sensor, an output signal can be obtained in the form of harmonic oscillations, as well as in the form of pulse oscillations of a special form.
The study of the characteristics of the magnetic field sensor is based on the complete equivalent circuit of the tunnel-resonant diode. The equivalent circuit takes into account both the capacitive and inductive properties of the tunneling resonant diode. The inductive component exists under any operating conditions, as a result of the fact that the current flowing through the device is always lagging behind the voltage that caused it, which corresponds to the inductive response of a tunnel-resonant diode.
Keywords:
References
Awan J. T.: Optical and Transport of pin GaAs-AlAs resonant tunneling diode. UFS Car 2014.
Azarov O. D., Garnaga V. A.: Push-pull DC amplifiers for multi-bit converters of self-calibrating information. Universum, Vinnytsia 2011
Azarov O. D., Krupelnytsky L. V.: Analog-digital devices of self-correcting systems for measurement and processing of low-frequency signals. Universum, Vinnytsia 2005.
Azarov O. D., Teplitsky M. Yu., Bilichenko N. O.: High-speed push-pull DC amplifiers with balanced feedback. VNTU, Vinnytsia 2016.
Borisenko V. E. et al.: Nanoelectronics: theory and practice textbook. Binom. Knowledge Laboratory, Moscow 2013.
Chand L. L., Esaki L., Tsu R.: Resonant tunneling in semiconductor double barriers. Appl. Phys. Lett. 24, 1974, 593–595. DOI: https://doi.org/10.1063/1.1655067
Esaki L., Tsu R.: Superlattics and negative differential conductivity in semiconductors. IBM J. Res. Develop. 14/1970, 61–65. DOI: https://doi.org/10.1147/rd.141.0061
Gotra S.Yu.: Microelectronic sensors of physical quantities. League – press, Lviv 2020.
Halimatus S., Warsuzarina M., Nabihah A., Jabbar M.: Resonant Tunneling Diode Design for Oscillator Circuit. International Postgraduate Conference – Physics, 2017, 1–8.
Huber J. L.: Physics of Novel InAs / AlSb / GaSb Resonant Interband Tunneling Structures. A Dissertation in Candidacy for the Degree of Doctor of Philosophy. Yale University, USA 1997.
Karandakov G. V., Kryvenko V. I.: Electrical engineering, electronics and microprocessor technology. NTU, Kyiv 2008.
Martinez-Duart J. M. et al.: Nanotechnology for micro- and optoelectronics. Technosphere, Moscow 2009.
McCarthy M., Collins A.: Switches and Multiplexers. Analog Dialogue 31(3), 1997, 20–22.
Meizda F.: Electronic measuring instruments and measurement methods. Mir, Moscow 1990.
Osadchuk I. A., Osadchuk A. V., Osadchuk V. S., Semenov A. O.: Nanoelectronic Pressure Transducer with a Frequency Output Based on a Resonance Tunnel Diode. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine 2020, 452–457, [http://doi.org/10.1109/TCSET49122.2020.235474]. DOI: https://doi.org/10.1109/TCSET49122.2020.235474
Osadchuk V. S., Osadchuk A. V.: Radiomeasuring Microelectronic Transducers of Physical Quantities. Proceedings of the 2015 International Siberian Conference on Control and Communications (SIBCON), Omsk 2015 [http://doi.org/10.1109/SIBCON.2015.7147167]. DOI: https://doi.org/10.1109/SIBCON.2015.7147167
Osadchuk V. S., Osadchuk A. V., Osadchuk I. A.: Microelectronic pressure transducer with frequency output based on tunnel resonance diode. Bulletin of Khmelnytsky National University – Technical science 1, 2015, 97–101.
Osadchuk V. S., Osadchuk A. V.: The Microelectronic Radiomeasuring Transducers of Magnetic Field with a Frequency Output. Elektronika ir Elektrotechnika 4, 2011, 67–70 [http://doi.org/10.5755/j01.eee.110.4.289]. DOI: https://doi.org/10.5755/j01.eee.110.4.289
Osadchuk V.S., Osadchuk A.V.: Microelectronic sensors of magnetic field with frequency output. Universum, Vinnitsa 2013. DOI: https://doi.org/10.5755/j01.eee.121.5.1661
Romanyuk N. et al.: Microfacet distribution function for physically based bidirectional reflectance distribution functions. Proc. SPIE 8698, 86980L [http://doi.org/10.1117/12.2019338]. DOI: https://doi.org/10.1117/12.2019338
Sun J. P., Haddad G. J. et al.: Resonant Tunneling Diodes: Models and Properties. Proceedings of The IEEE 86(4), 1998, 641–661. DOI: https://doi.org/10.1109/5.663541
Sze S. M., Kwok K. Ng.: Physics of Semiconductor Devices. Wiley-Interscience 2007. DOI: https://doi.org/10.1002/0470068329
Tsu R., Esaki L.: Tunneling in a finite superlattice. Appl. Phys. Lett. 22, 1973, 562–564. DOI: https://doi.org/10.1063/1.1654509
Vasilevskyi O. M., Yakovlev M. Y., Kulakov P. I.: Spectral method to evaluate the uncertainty of dynamic measurements. Technical Electrodynamics 4, 2017, 72–78. DOI: https://doi.org/10.15407/techned2017.04.072
Vasilevskyi O. M.: Methods of determining the recalibration interval measurement tools based on the concept of uncertainty. Technical Electrodynamics 6, 2014, 81–88.
Article Details
Abstract views: 380
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
