RESEARCH ON A MAGNETIC FIELD SENSOR WITH A FREQUENCY OUTPUT SIGNAL BASED ON A TUNNEL-RESONANCE DIODE
Alexander Osadchuk
osadchuk.av69@gmail.comVinnytsia National Technical University (Ukraine)
http://orcid.org/0000-0001-6662-9141
Vladimir Osadchuk
Vinnytsia National Technical University (Ukraine)
http://orcid.org/0000-0002-3142-3642
Iaroslav Osadchuk
Vinnytsia National Technical University (Ukraine)
http://orcid.org/0000-0002-5472-0797
Abstract
Based on the consideration of physical processes in a tunnel-resonant diode under the action of a magnetic field, the construction of an autogenerating magnetic field sensor with a frequency output signal is proposed. The use of devices with negative differential resistance makes it possible to significantly simplify the design of magnetic field sensors in the entire RF frequency range. Depending on the operating modes of the sensor, an output signal can be obtained in the form of harmonic oscillations, as well as in the form of pulse oscillations of a special form.
The study of the characteristics of the magnetic field sensor is based on the complete equivalent circuit of the tunnel-resonant diode. The equivalent circuit takes into account both the capacitive and inductive properties of the tunneling resonant diode. The inductive component exists under any operating conditions, as a result of the fact that the current flowing through the device is always lagging behind the voltage that caused it, which corresponds to the inductive response of a tunnel-resonant diode.
Keywords:
self-oscillator, tunneling resonant diode, negative differential resistance, frequency, quantum heterostructureReferences
Awan J. T.: Optical and Transport of pin GaAs-AlAs resonant tunneling diode. UFS Car 2014.
Google Scholar
Azarov O. D., Garnaga V. A.: Push-pull DC amplifiers for multi-bit converters of self-calibrating information. Universum, Vinnytsia 2011
Google Scholar
Azarov O. D., Krupelnytsky L. V.: Analog-digital devices of self-correcting systems for measurement and processing of low-frequency signals. Universum, Vinnytsia 2005.
Google Scholar
Azarov O. D., Teplitsky M. Yu., Bilichenko N. O.: High-speed push-pull DC amplifiers with balanced feedback. VNTU, Vinnytsia 2016.
Google Scholar
Borisenko V. E. et al.: Nanoelectronics: theory and practice textbook. Binom. Knowledge Laboratory, Moscow 2013.
Google Scholar
Chand L. L., Esaki L., Tsu R.: Resonant tunneling in semiconductor double barriers. Appl. Phys. Lett. 24, 1974, 593–595.
DOI: https://doi.org/10.1063/1.1655067
Google Scholar
Esaki L., Tsu R.: Superlattics and negative differential conductivity in semiconductors. IBM J. Res. Develop. 14/1970, 61–65.
DOI: https://doi.org/10.1147/rd.141.0061
Google Scholar
Gotra S.Yu.: Microelectronic sensors of physical quantities. League – press, Lviv 2020.
Google Scholar
Halimatus S., Warsuzarina M., Nabihah A., Jabbar M.: Resonant Tunneling Diode Design for Oscillator Circuit. International Postgraduate Conference – Physics, 2017, 1–8.
Google Scholar
Huber J. L.: Physics of Novel InAs / AlSb / GaSb Resonant Interband Tunneling Structures. A Dissertation in Candidacy for the Degree of Doctor of Philosophy. Yale University, USA 1997.
Google Scholar
Karandakov G. V., Kryvenko V. I.: Electrical engineering, electronics and microprocessor technology. NTU, Kyiv 2008.
Google Scholar
Martinez-Duart J. M. et al.: Nanotechnology for micro- and optoelectronics. Technosphere, Moscow 2009.
Google Scholar
McCarthy M., Collins A.: Switches and Multiplexers. Analog Dialogue 31(3), 1997, 20–22.
Google Scholar
Meizda F.: Electronic measuring instruments and measurement methods. Mir, Moscow 1990.
Google Scholar
Osadchuk I. A., Osadchuk A. V., Osadchuk V. S., Semenov A. O.: Nanoelectronic Pressure Transducer with a Frequency Output Based on a Resonance Tunnel Diode. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine 2020, 452–457, [http://doi.org/10.1109/TCSET49122.2020.235474].
DOI: https://doi.org/10.1109/TCSET49122.2020.235474
Google Scholar
Osadchuk V. S., Osadchuk A. V.: Radiomeasuring Microelectronic Transducers of Physical Quantities. Proceedings of the 2015 International Siberian Conference on Control and Communications (SIBCON), Omsk 2015 [http://doi.org/10.1109/SIBCON.2015.7147167].
DOI: https://doi.org/10.1109/SIBCON.2015.7147167
Google Scholar
Osadchuk V. S., Osadchuk A. V., Osadchuk I. A.: Microelectronic pressure transducer with frequency output based on tunnel resonance diode. Bulletin of Khmelnytsky National University – Technical science 1, 2015, 97–101.
Google Scholar
Osadchuk V. S., Osadchuk A. V.: The Microelectronic Radiomeasuring Transducers of Magnetic Field with a Frequency Output. Elektronika ir Elektrotechnika 4, 2011, 67–70 [http://doi.org/10.5755/j01.eee.110.4.289].
DOI: https://doi.org/10.5755/j01.eee.110.4.289
Google Scholar
Osadchuk V.S., Osadchuk A.V.: Microelectronic sensors of magnetic field with frequency output. Universum, Vinnitsa 2013.
DOI: https://doi.org/10.5755/j01.eee.121.5.1661
Google Scholar
Romanyuk N. et al.: Microfacet distribution function for physically based bidirectional reflectance distribution functions. Proc. SPIE 8698, 86980L [http://doi.org/10.1117/12.2019338].
DOI: https://doi.org/10.1117/12.2019338
Google Scholar
Sun J. P., Haddad G. J. et al.: Resonant Tunneling Diodes: Models and Properties. Proceedings of The IEEE 86(4), 1998, 641–661.
DOI: https://doi.org/10.1109/5.663541
Google Scholar
Sze S. M., Kwok K. Ng.: Physics of Semiconductor Devices. Wiley-Interscience 2007.
DOI: https://doi.org/10.1002/0470068329
Google Scholar
Tsu R., Esaki L.: Tunneling in a finite superlattice. Appl. Phys. Lett. 22, 1973, 562–564.
DOI: https://doi.org/10.1063/1.1654509
Google Scholar
Vasilevskyi O. M., Yakovlev M. Y., Kulakov P. I.: Spectral method to evaluate the uncertainty of dynamic measurements. Technical Electrodynamics 4, 2017, 72–78.
DOI: https://doi.org/10.15407/techned2017.04.072
Google Scholar
Vasilevskyi O. M.: Methods of determining the recalibration interval measurement tools based on the concept of uncertainty. Technical Electrodynamics 6, 2014, 81–88.
Google Scholar
Authors
Alexander Osadchukosadchuk.av69@gmail.com
Vinnytsia National Technical University Ukraine
http://orcid.org/0000-0001-6662-9141
Authors
Vladimir OsadchukVinnytsia National Technical University Ukraine
http://orcid.org/0000-0002-3142-3642
Authors
Iaroslav OsadchukVinnytsia National Technical University Ukraine
http://orcid.org/0000-0002-5472-0797
Statistics
Abstract views: 278PDF downloads: 192
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Alexander Osadchuk, Iaroslav Osadchuk, Volodymyr Martyniuk, Lyudmila Krylik, Maria Evseeva, MATHEMATICAL SIMULATION OF A MICROELECTRONIC TRANSDUCER WITH FREQUENCY OUTPUT FOR MEASURING THE INDUCTION OF THE MAGNETIC FIELD , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 2 (2022)
- Iaroslav Osadchuk, Alexander Osadchuk, Vladimir Osadchuk, Lyudmila Krylik, SELF-OSCILLATING PARAMETRIC HUMIDITY SENSOR WITH FREQUENCY OUTPUT SIGNAL , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 1 (2023)