RESEARCH ON A MAGNETIC FIELD SENSOR WITH A FREQUENCY OUTPUT SIGNAL BASED ON A TUNNEL-RESONANCE DIODE

Alexander Osadchuk

osadchuk.av69@gmail.com
Vinnytsia National Technical University (Ukraine)
http://orcid.org/0000-0001-6662-9141

Vladimir Osadchuk


Vinnytsia National Technical University (Ukraine)
http://orcid.org/0000-0002-3142-3642

Iaroslav Osadchuk


Vinnytsia National Technical University (Ukraine)
http://orcid.org/0000-0002-5472-0797

Abstract

Based on the consideration of physical processes in a tunnel-resonant diode under the action of a magnetic field, the construction of an autogenerating magnetic field sensor with a frequency output signal is proposed. The use of devices with negative differential resistance makes it possible to significantly simplify the design of magnetic field sensors in the entire RF frequency range. Depending on the operating modes of the sensor, an output signal can be obtained in the form of harmonic oscillations, as well as in the form of pulse oscillations of a special form.

The study of the characteristics of the magnetic field sensor is based on the complete equivalent circuit of the tunnel-resonant diode. The equivalent circuit takes into account both the capacitive and inductive properties of the tunneling resonant diode. The inductive component exists under any operating conditions, as a result of the fact that the current flowing through the device is always lagging behind the voltage that caused it, which corresponds to the inductive response of a tunnel-resonant diode.


Keywords:

self-oscillator, tunneling resonant diode, negative differential resistance, frequency, quantum heterostructure

Awan J. T.: Optical and Transport of pin GaAs-AlAs resonant tunneling diode. UFS Car 2014.
  Google Scholar

Azarov O. D., Garnaga V. A.: Push-pull DC amplifiers for multi-bit converters of self-calibrating information. Universum, Vinnytsia 2011
  Google Scholar

Azarov O. D., Krupelnytsky L. V.: Analog-digital devices of self-correcting systems for measurement and processing of low-frequency signals. Universum, Vinnytsia 2005.
  Google Scholar

Azarov O. D., Teplitsky M. Yu., Bilichenko N. O.: High-speed push-pull DC amplifiers with balanced feedback. VNTU, Vinnytsia 2016.
  Google Scholar

Borisenko V. E. et al.: Nanoelectronics: theory and practice textbook. Binom. Knowledge Laboratory, Moscow 2013.
  Google Scholar

Chand L. L., Esaki L., Tsu R.: Resonant tunneling in semiconductor double barriers. Appl. Phys. Lett. 24, 1974, 593–595.
DOI: https://doi.org/10.1063/1.1655067   Google Scholar

Esaki L., Tsu R.: Superlattics and negative differential conductivity in semiconductors. IBM J. Res. Develop. 14/1970, 61–65.
DOI: https://doi.org/10.1147/rd.141.0061   Google Scholar

Gotra S.Yu.: Microelectronic sensors of physical quantities. League – press, Lviv 2020.
  Google Scholar

Halimatus S., Warsuzarina M., Nabihah A., Jabbar M.: Resonant Tunneling Diode Design for Oscillator Circuit. International Postgraduate Conference – Physics, 2017, 1–8.
  Google Scholar

Huber J. L.: Physics of Novel InAs / AlSb / GaSb Resonant Interband Tunneling Structures. A Dissertation in Candidacy for the Degree of Doctor of Philosophy. Yale University, USA 1997.
  Google Scholar

Karandakov G. V., Kryvenko V. I.: Electrical engineering, electronics and microprocessor technology. NTU, Kyiv 2008.
  Google Scholar

Martinez-Duart J. M. et al.: Nanotechnology for micro- and optoelectronics. Technosphere, Moscow 2009.
  Google Scholar

McCarthy M., Collins A.: Switches and Multiplexers. Analog Dialogue 31(3), 1997, 20–22.
  Google Scholar

Meizda F.: Electronic measuring instruments and measurement methods. Mir, Moscow 1990.
  Google Scholar

Osadchuk I. A., Osadchuk A. V., Osadchuk V. S., Semenov A. O.: Nanoelectronic Pressure Transducer with a Frequency Output Based on a Resonance Tunnel Diode. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine 2020, 452–457, [http://doi.org/10.1109/TCSET49122.2020.235474].
DOI: https://doi.org/10.1109/TCSET49122.2020.235474   Google Scholar

Osadchuk V. S., Osadchuk A. V.: Radiomeasuring Microelectronic Transducers of Physical Quantities. Proceedings of the 2015 International Siberian Conference on Control and Communications (SIBCON), Omsk 2015 [http://doi.org/10.1109/SIBCON.2015.7147167].
DOI: https://doi.org/10.1109/SIBCON.2015.7147167   Google Scholar

Osadchuk V. S., Osadchuk A. V., Osadchuk I. A.: Microelectronic pressure transducer with frequency output based on tunnel resonance diode. Bulletin of Khmelnytsky National University – Technical science 1, 2015, 97–101.
  Google Scholar

Osadchuk V. S., Osadchuk A. V.: The Microelectronic Radiomeasuring Transducers of Magnetic Field with a Frequency Output. Elektronika ir Elektrotechnika 4, 2011, 67–70 [http://doi.org/10.5755/j01.eee.110.4.289].
DOI: https://doi.org/10.5755/j01.eee.110.4.289   Google Scholar

Osadchuk V.S., Osadchuk A.V.: Microelectronic sensors of magnetic field with frequency output. Universum, Vinnitsa 2013.
DOI: https://doi.org/10.5755/j01.eee.121.5.1661   Google Scholar

Romanyuk N. et al.: Microfacet distribution function for physically based bidirectional reflectance distribution functions. Proc. SPIE 8698, 86980L [http://doi.org/10.1117/12.2019338].
DOI: https://doi.org/10.1117/12.2019338   Google Scholar

Sun J. P., Haddad G. J. et al.: Resonant Tunneling Diodes: Models and Properties. Proceedings of The IEEE 86(4), 1998, 641–661.
DOI: https://doi.org/10.1109/5.663541   Google Scholar

Sze S. M., Kwok K. Ng.: Physics of Semiconductor Devices. Wiley-Interscience 2007.
DOI: https://doi.org/10.1002/0470068329   Google Scholar

Tsu R., Esaki L.: Tunneling in a finite superlattice. Appl. Phys. Lett. 22, 1973, 562–564.
DOI: https://doi.org/10.1063/1.1654509   Google Scholar

Vasilevskyi O. M., Yakovlev M. Y., Kulakov P. I.: Spectral method to evaluate the uncertainty of dynamic measurements. Technical Electrodynamics 4, 2017, 72–78.
DOI: https://doi.org/10.15407/techned2017.04.072   Google Scholar

Vasilevskyi O. M.: Methods of determining the recalibration interval measurement tools based on the concept of uncertainty. Technical Electrodynamics 6, 2014, 81–88.
  Google Scholar

Download


Published
2020-12-20

Cited by

Osadchuk, A., Osadchuk, V., & Osadchuk, I. (2020). RESEARCH ON A MAGNETIC FIELD SENSOR WITH A FREQUENCY OUTPUT SIGNAL BASED ON A TUNNEL-RESONANCE DIODE . Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 10(4), 51–56. https://doi.org/10.35784/iapgos.2357

Authors

Alexander Osadchuk 
osadchuk.av69@gmail.com
Vinnytsia National Technical University Ukraine
http://orcid.org/0000-0001-6662-9141

Authors

Vladimir Osadchuk 

Vinnytsia National Technical University Ukraine
http://orcid.org/0000-0002-3142-3642

Authors

Iaroslav Osadchuk 

Vinnytsia National Technical University Ukraine
http://orcid.org/0000-0002-5472-0797

Statistics

Abstract views: 230
PDF downloads: 158