DIGITAL CONTACT POTENTIAL PROBE IN STUDYING THE DEFORMATION OF DIELECTRIC MATERIALS
Article Sidebar
Open full text
Issue Vol. 10 No. 4 (2020)
-
MODELING ELECTROMAGNETIC NANOSTRUCTURES AND EXPERIMENTING WITH NANOELECTRIC ELEMENTS TO FORM PERIODIC STRUCTURES
Miloslav Steinbauer, Roman Pernica, Jiri Zukal, Radim Kadlec, Tibor Bachorec, Pavel Fiala4-14
-
X-RAY DIFFRACTION AND MÖSSBAUER SPECTROSCOPY INVESTIGATIONS OF THE (Al, Ni, Co)-DOPED AgFeO2 SYNTHESIZED BY HYDROTHERMAL METHOD
Karolina Siedliska15-18
-
COMPUTER PREDICTION OF TECHNOLOGICAL REGIMES OF RAPID CONE-SHAPED ADSORPTION FILTERS WITH CHEMICAL REGENERATION OF HOMOGENEOUS POROUS LOADS
Andrii Bomba, Yurii Klymyuk, Ihor Prysіazhnіuk19-24
-
FREQUENCY RESPONSE OF NORRIS GAP DERIVATIVES AND ITS PROSPERITIES FOR GAS SPECTRA ANALYSIS
Sławomir Cięszczyk25-28
-
BIT ERROR NOTIFICATION AND ESTIMATION IN REDUNDANT SUCCESSIVE-APPROXIMATION ADC
Serhii Zakharchenko , Roman Humeniuk29-32
-
DEVELOPMENT OF A MODULAR LIGHT-WEIGHT MANIPULATOR FOR HUMAN-ROBOT INTERACTION IN MEDICAL APPLICATIONS
Adam Kurnicki, Bartłomiej Stańczyk33-37
-
TAKING INTO ACCOUNT THE PHASE INSTABILITY OF GENERATORS CAUSED BY THE INFLUENCE OF IONIZING RADIATION OF SPACE ON THE PARAMETERS OF CARRIER FREQUENCY SYNCHRONIZATION SYSTEMS
Oleksandr Turovsky, Sergei Panadiy38-42
-
MULTI-CHANNEL DIGITAL-ANALOG SYSTEM BASED ON CURRENT-CURRENT CONVERTERS
Olexiy Azarov, Yevhenii Heneralnytskyi, Nataliia Rybko43-46
-
A COMPUTER SYSTEM FOR ACQUISITION AND ANALYSIS OF MEASUREMENT DATA FOR A SKEW ROLLING MILL IN MANUFACTURING STEEL BALLS
Marcin Buczaj, Andrzej Sumorek47-50
-
RESEARCH ON A MAGNETIC FIELD SENSOR WITH A FREQUENCY OUTPUT SIGNAL BASED ON A TUNNEL-RESONANCE DIODE
Alexander Osadchuk, Vladimir Osadchuk, Iaroslav Osadchuk51-56
-
DIGITAL CONTACT POTENTIAL PROBE IN STUDYING THE DEFORMATION OF DIELECTRIC MATERIALS
Kanstantsin Pantsialeyeu, Anatoly Zharin, Oleg Gusev, Roman Vorobey, Andrey Tyavlovsky, Konstantin Tyavlovsky, Aliaksandr Svistun57-60
-
OVERVIEW OF AOI USE IN SURFACE-MOUNT TECHNOLOGY CONTROL
Magdalena Michalska61-64
-
AN ELECTRICALLY-CONTROLLED AXIAL-FLUX PERMANENT MAGNET GENERATOR
Piotr Paplicki, Paweł Prajzendanc, Marcin Wardach65-68
-
METHOD OF DETERMINING THE COP COEFFICIENT FOR A COOLING SYSTEM
Mariusz Rzasa, Sławomir Pochwała, Sławomir Szymaniec69-72
-
THE IMPACT OF DIGITAL PHOTOGRAPHY PROCESSING IN MOBILE APPLICATIONS ON THE QUALITY OF REACH IN SOCIAL MEDIA
Magdalena Paśnikowska-Łukaszuk, Arkadiusz Urzędowski73-76
-
USE OF WEB 2.0 TOOLS BY POLISH HEALTH PORTALS
Magdalena Czerwinska77-82
Archives
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
-
Vol. 8 No. 4
2018-12-16 16
-
Vol. 8 No. 3
2018-09-25 16
-
Vol. 8 No. 2
2018-05-30 18
-
Vol. 8 No. 1
2018-02-28 18
Main Article Content
DOI
Authors
Abstract
The paper reviews the results of a study on the surface electrostatic charges of dielectrics obtained using the contact potential difference (CPD) technique. Initially, the CPD technique was only applied to the study of metal and semiconductor surfaces. The conventional CPD measurement technique requires full compensation of the measured potential that, in the case of dielectrics, could reach very high values. Such high potentials are hard to compensate. Therefore, the conventional CPD method is rarely applied in the study of dielectric materials. Some important improvements recently made to the CPD measurement technique removed the need for compensation. The new method, which does not require compensation, has been implemented in the form of a digital Kelvin probe. The paper describes the principles of the non-compensation CPD measurement technique which was developed for mapping the electrostatic surface charge space distribution across a wide range of potential values. The study was performed on polymers such as low-density polyethylene (LDPE) and polytetrafluoroethylene (PTFE).
Keywords:
References
Baumgartner H.: New method for the distance control of a scanning Kelvin microscope. Measurement science & technology 2(3), 1992, 237–238. DOI: https://doi.org/10.1088/0957-0233/3/2/017
Brain K. R.: Investigations of piezo-electric effects with dielectrics. Proceedings of the Physical Society of London 36(1), 1923. DOI: https://doi.org/10.1088/1478-7814/36/1/309
Broadhurst M. G., Malmberg C. G., Mopsik F. I., Harris W. P.: Piezo- and pyro-electricity in polymer electrets. Conference on Electrical Insulation & Dielectric Phenomena. Annual Report, 1972 [http://doi.org/10.1109/ceidp.1972.7734193]. DOI: https://doi.org/10.1109/CEIDP.1972.7734193
Davies D. K.: Charge generation on dielectric surfaces. Journal of Physics D: Applied Physics 2(11), 1969, 1533–1537 [http://doi.org/10.1088/0022-3727/2/11/307]. DOI: https://doi.org/10.1088/0022-3727/2/11/307
Dogadkin B. A., Gul V. E., Morozova N. A.: The Effect of Electric Charges Formed during Repeated Deformations on the Fatigue Resistance of Vulcanizates. Rubber Chemistry and Technology 33(4), 1960 [http://doi.org/10.5254/1.3542237]. DOI: https://doi.org/10.5254/1.3542237
Kelvin L.: Contact electricity of metals. Philosophical Magazine (series 5) 46(278), 1898, 82–120 [http://doi.org/10.1080/14786449808621172]. DOI: https://doi.org/10.1080/14786449808621172
Lei Zhang, Zhiwei Chen, Jiale Mao, Shuang Wang, Yiting Zheng: Quantitative evaluation of inclusion homogeneity in composites and the applications (Review Article). Journal of Materials Research and Technology 9(3), 2020 [http://doi.org/10.1016/j.jmrt.2020.01.067]. DOI: https://doi.org/10.1016/j.jmrt.2020.01.067
Pantsialeyeu K. U., Krautsevich A. U., Rovba I. A., Lysenko V. I., Vorobey R. I., Gusev O. K., Zharin A. L.: Analysis of the electrophysical and photoelectric properties of nanocomposite polymers by the modified Kelvin probe. Devices and Methods of Measurements 8(4), 2017, 386–397 (in russian) [http://doi.org/10.21122/2220-9506-2017-8-4-55-62]. DOI: https://doi.org/10.21122/2220-9506-2017-8-4-55-62
Pantsialeyeu K., Mikitsevich U., Zharin A.: Design of the contact potentials difference probes. Devices and Methods of Measurements 7(1), 2016, 7–15 (in russian) [http://doi.org/10.21122/2220-9506-2016-7-1-7-15]. DOI: https://doi.org/10.21122/2220-9506-2016-7-1-7-15
Pantsialeyeu K., Svistun A., Tyavlovsky A., Zharin A.: Digital contact potential difference probe. Devices and Methods of Measurements 7(2), 2016, 136–144 (in russian) [http://doi.org/10.21122/2220-9506-2016-7-2-136-144]. DOI: https://doi.org/10.21122/2220-9506-2016-7-2-136-144
Pantsialeyeu K., Svistun A., Zharin A.: Methods for local changes in the plastic deformation diagnostics on the work function. Devices and Methods of Measurements 10(1), 2015, 56–63.
Pilipenko V., Solodukha V., Zharin A., Gusev O., Vorobey R., Pantsialeyeu K., Tyavlovsky A., Tyavlovsky K., Bondariev V.: Influence of rapid thermal treatment of initial silicon wafers on the electrophysical properties of silicon dioxide obtained by pyrogenous oxidation. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes 23(3), 2019, 283–290 [http://doi.org/10.1615/HighTempMatProc.2019031122]. DOI: https://doi.org/10.1615/HighTempMatProc.2019031122
Qin W. G., Shaw D. A.: Theoretical model on surface electronic behaviour: strain effect. Phys. B: Condensed Matter 6(16), 2009, 2247–2250.
Sviridenok A., Zharin A., Krautsevich A., Tyavlovsky A.: The effect of high-dispersion fillers on adhesive and frictional properties of ethylene-vinyl acetate copolymer. Journal of Friction and Wear 35, 2014, 255–262. DOI: https://doi.org/10.3103/S1068366614040114
Sykes J. M., Doherty M.: Interpretation of Scanning Kelvin Probe potential maps for coated steel using semi-quantitative current density maps. Corrosion Science 50, 2008, 2773–2778 [http://doi.org/10.1016/j.corsci.2008.07.023]. DOI: https://doi.org/10.1016/j.corsci.2008.07.023
Tyavlovsky A. K., Zharin A. L., Gusev O. K., Kierczynski K.: Kelvin Probe error compensation based on harmonic analysis of measurement signal. Przeglad Elektrotechniczny 90, 2014, 251–254.
Vorobey R. I. Gusev O. K. Tyavlovsky A. K., Svistun A. I., Shadurskaja L., Yarzhembiyskaja N., Kerczynski K.: Controlling the characteristics of photovoltaic cell based on their own semiconductors. Przeglad Elektrotechniczny 91(8), 2015, 81–85 [http://doi.org/10.15199/48.2015.08.21]. DOI: https://doi.org/10.15199/48.2015.08.21
Wicinski M., Burgstaller W., Hassel A. W.: Lateral resolution in scanning Kelvin probe microscopy. Corrosion Science 104, 2016, 1–8 [http://doi.org/10.1016/j.corsci.2015.09.008]. DOI: https://doi.org/10.1016/j.corsci.2015.09.008
Zharin A., Pantsialeyeu K., Kierczyński K.: Charge sensitive techniques in control of the homogeneity of optical metallic surfaces. Przegląd Elektrotechniczny 92(8), 2016, 190–193
[http://doi.org/10.15199/48.2016.08.52]. DOI: https://doi.org/10.15199/48.2016.08.52
Zharin A., Pantsialeyeu K., Opielak M., Rogalski P.: Charge sensitive techniques in tribology studies. Przegląd Elektrotechniczny 92(11), 2016, 239–243 [http://doi.org/10.15199 / 48.2016.11.58]. DOI: https://doi.org/10.15199/48.2016.11.58
Zisman W.: A new method of measuring contact potential differences in metals. Review of Scientific Instruments 3(7), 1932, 367–370 [http://doi.org/10.1063/1.1748947]. DOI: https://doi.org/10.1063/1.1748947
Article Details
Abstract views: 443
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
