DIGITAL CONTACT POTENTIAL PROBE IN STUDYING THE DEFORMATION OF DIELECTRIC MATERIALS
Kanstantsin Pantsialeyeu
k.pantsialeyeu@bntu.byBelarusian National Technical University, Instrumentation Engineering Faculty (Belarus)
http://orcid.org/0000-0001-7113-1815
Anatoly Zharin
Belarusian National Technical University, Instrumentation Engineering Faculty (Belarus)
http://orcid.org/0000-0001-7213-4532
Oleg Gusev
Belarusian National Technical University, Instrumentation Engineering Faculty (Belarus)
http://orcid.org/0000-0001-5180-1121
Roman Vorobey
Belarusian National Technical University, Instrumentation Engineering Faculty (Belarus)
http://orcid.org/0000-0003-2851-6108
Andrey Tyavlovsky
Belarusian National Technical University, Instrumentation Engineering Faculty (Belarus)
http://orcid.org/0000-0003-2579-1016
Konstantin Tyavlovsky
Belarusian National Technical University, Instrumentation Engineering Faculty (Belarus)
http://orcid.org/0000-0001-8020-0165
Aliaksandr Svistun
Belarusian National Technical University, Instrumentation Engineering Faculty (Belarus)
http://orcid.org/0000-0002-9593-8880
Abstract
The paper reviews the results of a study on the surface electrostatic charges of dielectrics obtained using the contact potential difference (CPD) technique. Initially, the CPD technique was only applied to the study of metal and semiconductor surfaces. The conventional CPD measurement technique requires full compensation of the measured potential that, in the case of dielectrics, could reach very high values. Such high potentials are hard to compensate. Therefore, the conventional CPD method is rarely applied in the study of dielectric materials. Some important improvements recently made to the CPD measurement technique removed the need for compensation. The new method, which does not require compensation, has been implemented in the form of a digital Kelvin probe. The paper describes the principles of the non-compensation CPD measurement technique which was developed for mapping the electrostatic surface charge space distribution across a wide range of potential values. The study was performed on polymers such as low-density polyethylene (LDPE) and polytetrafluoroethylene (PTFE).
Keywords:
surface charge distribution, contact potential difference, Scanning Kelvin Probe, dielectrics materialsReferences
Baumgartner H.: New method for the distance control of a scanning Kelvin microscope. Measurement science & technology 2(3), 1992, 237–238.
DOI: https://doi.org/10.1088/0957-0233/3/2/017
Google Scholar
Brain K. R.: Investigations of piezo-electric effects with dielectrics. Proceedings of the Physical Society of London 36(1), 1923.
DOI: https://doi.org/10.1088/1478-7814/36/1/309
Google Scholar
Broadhurst M. G., Malmberg C. G., Mopsik F. I., Harris W. P.: Piezo- and pyro-electricity in polymer electrets. Conference on Electrical Insulation & Dielectric Phenomena. Annual Report, 1972 [http://doi.org/10.1109/ceidp.1972.7734193].
DOI: https://doi.org/10.1109/CEIDP.1972.7734193
Google Scholar
Davies D. K.: Charge generation on dielectric surfaces. Journal of Physics D: Applied Physics 2(11), 1969, 1533–1537 [http://doi.org/10.1088/0022-3727/2/11/307].
DOI: https://doi.org/10.1088/0022-3727/2/11/307
Google Scholar
Dogadkin B. A., Gul V. E., Morozova N. A.: The Effect of Electric Charges Formed during Repeated Deformations on the Fatigue Resistance of Vulcanizates. Rubber Chemistry and Technology 33(4), 1960 [http://doi.org/10.5254/1.3542237].
DOI: https://doi.org/10.5254/1.3542237
Google Scholar
Kelvin L.: Contact electricity of metals. Philosophical Magazine (series 5) 46(278), 1898, 82–120 [http://doi.org/10.1080/14786449808621172].
DOI: https://doi.org/10.1080/14786449808621172
Google Scholar
Lei Zhang, Zhiwei Chen, Jiale Mao, Shuang Wang, Yiting Zheng: Quantitative evaluation of inclusion homogeneity in composites and the applications (Review Article). Journal of Materials Research and Technology 9(3), 2020 [http://doi.org/10.1016/j.jmrt.2020.01.067].
DOI: https://doi.org/10.1016/j.jmrt.2020.01.067
Google Scholar
Pantsialeyeu K. U., Krautsevich A. U., Rovba I. A., Lysenko V. I., Vorobey R. I., Gusev O. K., Zharin A. L.: Analysis of the electrophysical and photoelectric properties of nanocomposite polymers by the modified Kelvin probe. Devices and Methods of Measurements 8(4), 2017, 386–397 (in russian) [http://doi.org/10.21122/2220-9506-2017-8-4-55-62].
DOI: https://doi.org/10.21122/2220-9506-2017-8-4-55-62
Google Scholar
Pantsialeyeu K., Mikitsevich U., Zharin A.: Design of the contact potentials difference probes. Devices and Methods of Measurements 7(1), 2016, 7–15 (in russian) [http://doi.org/10.21122/2220-9506-2016-7-1-7-15].
DOI: https://doi.org/10.21122/2220-9506-2016-7-1-7-15
Google Scholar
Pantsialeyeu K., Svistun A., Tyavlovsky A., Zharin A.: Digital contact potential difference probe. Devices and Methods of Measurements 7(2), 2016, 136–144 (in russian) [http://doi.org/10.21122/2220-9506-2016-7-2-136-144].
DOI: https://doi.org/10.21122/2220-9506-2016-7-2-136-144
Google Scholar
Pantsialeyeu K., Svistun A., Zharin A.: Methods for local changes in the plastic deformation diagnostics on the work function. Devices and Methods of Measurements 10(1), 2015, 56–63.
Google Scholar
Pilipenko V., Solodukha V., Zharin A., Gusev O., Vorobey R., Pantsialeyeu K., Tyavlovsky A., Tyavlovsky K., Bondariev V.: Influence of rapid thermal treatment of initial silicon wafers on the electrophysical properties of silicon dioxide obtained by pyrogenous oxidation. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes 23(3), 2019, 283–290 [http://doi.org/10.1615/HighTempMatProc.2019031122].
DOI: https://doi.org/10.1615/HighTempMatProc.2019031122
Google Scholar
Qin W. G., Shaw D. A.: Theoretical model on surface electronic behaviour: strain effect. Phys. B: Condensed Matter 6(16), 2009, 2247–2250.
Google Scholar
Sviridenok A., Zharin A., Krautsevich A., Tyavlovsky A.: The effect of high-dispersion fillers on adhesive and frictional properties of ethylene-vinyl acetate copolymer. Journal of Friction and Wear 35, 2014, 255–262.
DOI: https://doi.org/10.3103/S1068366614040114
Google Scholar
Sykes J. M., Doherty M.: Interpretation of Scanning Kelvin Probe potential maps for coated steel using semi-quantitative current density maps. Corrosion Science 50, 2008, 2773–2778 [http://doi.org/10.1016/j.corsci.2008.07.023].
DOI: https://doi.org/10.1016/j.corsci.2008.07.023
Google Scholar
Tyavlovsky A. K., Zharin A. L., Gusev O. K., Kierczynski K.: Kelvin Probe error compensation based on harmonic analysis of measurement signal. Przeglad Elektrotechniczny 90, 2014, 251–254.
Google Scholar
Vorobey R. I. Gusev O. K. Tyavlovsky A. K., Svistun A. I., Shadurskaja L., Yarzhembiyskaja N., Kerczynski K.: Controlling the characteristics of photovoltaic cell based on their own semiconductors. Przeglad Elektrotechniczny 91(8), 2015, 81–85 [http://doi.org/10.15199/48.2015.08.21].
DOI: https://doi.org/10.15199/48.2015.08.21
Google Scholar
Wicinski M., Burgstaller W., Hassel A. W.: Lateral resolution in scanning Kelvin probe microscopy. Corrosion Science 104, 2016, 1–8 [http://doi.org/10.1016/j.corsci.2015.09.008].
DOI: https://doi.org/10.1016/j.corsci.2015.09.008
Google Scholar
Zharin A., Pantsialeyeu K., Kierczyński K.: Charge sensitive techniques in control of the homogeneity of optical metallic surfaces. Przegląd Elektrotechniczny 92(8), 2016, 190–193
Google Scholar
[http://doi.org/10.15199/48.2016.08.52].
DOI: https://doi.org/10.15199/48.2016.08.52
Google Scholar
Zharin A., Pantsialeyeu K., Opielak M., Rogalski P.: Charge sensitive techniques in tribology studies. Przegląd Elektrotechniczny 92(11), 2016, 239–243 [http://doi.org/10.15199 / 48.2016.11.58].
DOI: https://doi.org/10.15199/48.2016.11.58
Google Scholar
Zisman W.: A new method of measuring contact potential differences in metals. Review of Scientific Instruments 3(7), 1932, 367–370 [http://doi.org/10.1063/1.1748947].
DOI: https://doi.org/10.1063/1.1748947
Google Scholar
Authors
Kanstantsin Pantsialeyeuk.pantsialeyeu@bntu.by
Belarusian National Technical University, Instrumentation Engineering Faculty Belarus
http://orcid.org/0000-0001-7113-1815
Authors
Anatoly ZharinBelarusian National Technical University, Instrumentation Engineering Faculty Belarus
http://orcid.org/0000-0001-7213-4532
Authors
Oleg GusevBelarusian National Technical University, Instrumentation Engineering Faculty Belarus
http://orcid.org/0000-0001-5180-1121
Authors
Roman VorobeyBelarusian National Technical University, Instrumentation Engineering Faculty Belarus
http://orcid.org/0000-0003-2851-6108
Authors
Andrey TyavlovskyBelarusian National Technical University, Instrumentation Engineering Faculty Belarus
http://orcid.org/0000-0003-2579-1016
Authors
Konstantin TyavlovskyBelarusian National Technical University, Instrumentation Engineering Faculty Belarus
http://orcid.org/0000-0001-8020-0165
Authors
Aliaksandr SvistunBelarusian National Technical University, Instrumentation Engineering Faculty Belarus
http://orcid.org/0000-0002-9593-8880
Statistics
Abstract views: 342PDF downloads: 169
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.