DIGITAL CONTACT POTENTIAL PROBE IN STUDYING THE DEFORMATION OF DIELECTRIC MATERIALS

Kanstantsin Pantsialeyeu

k.pantsialeyeu@bntu.by
Belarusian National Technical University, Instrumentation Engineering Faculty (Belarus)
http://orcid.org/0000-0001-7113-1815

Anatoly Zharin


Belarusian National Technical University, Instrumentation Engineering Faculty (Belarus)
http://orcid.org/0000-0001-7213-4532

Oleg Gusev


Belarusian National Technical University, Instrumentation Engineering Faculty (Belarus)
http://orcid.org/0000-0001-5180-1121

Roman Vorobey


Belarusian National Technical University, Instrumentation Engineering Faculty (Belarus)
http://orcid.org/0000-0003-2851-6108

Andrey Tyavlovsky


Belarusian National Technical University, Instrumentation Engineering Faculty (Belarus)
http://orcid.org/0000-0003-2579-1016

Konstantin Tyavlovsky


Belarusian National Technical University, Instrumentation Engineering Faculty (Belarus)
http://orcid.org/0000-0001-8020-0165

Aliaksandr Svistun


Belarusian National Technical University, Instrumentation Engineering Faculty (Belarus)
http://orcid.org/0000-0002-9593-8880

Abstract

The paper reviews the results of a study on the surface electrostatic charges of dielectrics obtained using the contact potential difference (CPD) technique. Initially, the CPD technique was only applied to the study of metal and semiconductor surfaces. The conventional CPD measurement technique requires full compensation of the measured potential that, in the case of dielectrics, could reach very high values. Such high potentials are hard to compensate. Therefore, the conventional CPD method is rarely applied in the study of dielectric materials. Some important improvements recently made to the CPD measurement technique removed the need for compensation. The new method, which does not require compensation, has been implemented in the form of a digital Kelvin probe. The paper describes the principles of the non-compensation CPD measurement technique which was developed for mapping the electrostatic surface charge space distribution across a wide range of potential values. The study was performed on polymers such as low-density polyethylene (LDPE) and polytetrafluoroethylene (PTFE).


Keywords:

surface charge distribution, contact potential difference, Scanning Kelvin Probe, dielectrics materials

Baumgartner H.: New method for the distance control of a scanning Kelvin microscope. Measurement science & technology 2(3), 1992, 237–238.
DOI: https://doi.org/10.1088/0957-0233/3/2/017   Google Scholar

Brain K. R.: Investigations of piezo-electric effects with dielectrics. Proceedings of the Physical Society of London 36(1), 1923.
DOI: https://doi.org/10.1088/1478-7814/36/1/309   Google Scholar

Broadhurst M. G., Malmberg C. G., Mopsik F. I., Harris W. P.: Piezo- and pyro-electricity in polymer electrets. Conference on Electrical Insulation & Dielectric Phenomena. Annual Report, 1972 [http://doi.org/10.1109/ceidp.1972.7734193].
DOI: https://doi.org/10.1109/CEIDP.1972.7734193   Google Scholar

Davies D. K.: Charge generation on dielectric surfaces. Journal of Physics D: Applied Physics 2(11), 1969, 1533–1537 [http://doi.org/10.1088/0022-3727/2/11/307].
DOI: https://doi.org/10.1088/0022-3727/2/11/307   Google Scholar

Dogadkin B. A., Gul V. E., Morozova N. A.: The Effect of Electric Charges Formed during Repeated Deformations on the Fatigue Resistance of Vulcanizates. Rubber Chemistry and Technology 33(4), 1960 [http://doi.org/10.5254/1.3542237].
DOI: https://doi.org/10.5254/1.3542237   Google Scholar

Kelvin L.: Contact electricity of metals. Philosophical Magazine (series 5) 46(278), 1898, 82–120 [http://doi.org/10.1080/14786449808621172].
DOI: https://doi.org/10.1080/14786449808621172   Google Scholar

Lei Zhang, Zhiwei Chen, Jiale Mao, Shuang Wang, Yiting Zheng: Quantitative evaluation of inclusion homogeneity in composites and the applications (Review Article). Journal of Materials Research and Technology 9(3), 2020 [http://doi.org/10.1016/j.jmrt.2020.01.067].
DOI: https://doi.org/10.1016/j.jmrt.2020.01.067   Google Scholar

Pantsialeyeu K. U., Krautsevich A. U., Rovba I. A., Lysenko V. I., Vorobey R. I., Gusev O. K., Zharin A. L.: Analysis of the electrophysical and photoelectric properties of nanocomposite polymers by the modified Kelvin probe. Devices and Methods of Measurements 8(4), 2017, 386–397 (in russian) [http://doi.org/10.21122/2220-9506-2017-8-4-55-62].
DOI: https://doi.org/10.21122/2220-9506-2017-8-4-55-62   Google Scholar

Pantsialeyeu K., Mikitsevich U., Zharin A.: Design of the contact potentials difference probes. Devices and Methods of Measurements 7(1), 2016, 7–15 (in russian) [http://doi.org/10.21122/2220-9506-2016-7-1-7-15].
DOI: https://doi.org/10.21122/2220-9506-2016-7-1-7-15   Google Scholar

Pantsialeyeu K., Svistun A., Tyavlovsky A., Zharin A.: Digital contact potential difference probe. Devices and Methods of Measurements 7(2), 2016, 136–144 (in russian) [http://doi.org/10.21122/2220-9506-2016-7-2-136-144].
DOI: https://doi.org/10.21122/2220-9506-2016-7-2-136-144   Google Scholar

Pantsialeyeu K., Svistun A., Zharin A.: Methods for local changes in the plastic deformation diagnostics on the work function. Devices and Methods of Measurements 10(1), 2015, 56–63.
  Google Scholar

Pilipenko V., Solodukha V., Zharin A., Gusev O., Vorobey R., Pantsialeyeu K., Tyavlovsky A., Tyavlovsky K., Bondariev V.: Influence of rapid thermal treatment of initial silicon wafers on the electrophysical properties of silicon dioxide obtained by pyrogenous oxidation. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes 23(3), 2019, 283–290 [http://doi.org/10.1615/HighTempMatProc.2019031122].
DOI: https://doi.org/10.1615/HighTempMatProc.2019031122   Google Scholar

Qin W. G., Shaw D. A.: Theoretical model on surface electronic behaviour: strain effect. Phys. B: Condensed Matter 6(16), 2009, 2247–2250.
  Google Scholar

Sviridenok A., Zharin A., Krautsevich A., Tyavlovsky A.: The effect of high-dispersion fillers on adhesive and frictional properties of ethylene-vinyl acetate copolymer. Journal of Friction and Wear 35, 2014, 255–262.
DOI: https://doi.org/10.3103/S1068366614040114   Google Scholar

Sykes J. M., Doherty M.: Interpretation of Scanning Kelvin Probe potential maps for coated steel using semi-quantitative current density maps. Corrosion Science 50, 2008, 2773–2778 [http://doi.org/10.1016/j.corsci.2008.07.023].
DOI: https://doi.org/10.1016/j.corsci.2008.07.023   Google Scholar

Tyavlovsky A. K., Zharin A. L., Gusev O. K., Kierczynski K.: Kelvin Probe error compensation based on harmonic analysis of measurement signal. Przeglad Elektrotechniczny 90, 2014, 251–254.
  Google Scholar

Vorobey R. I. Gusev O. K. Tyavlovsky A. K., Svistun A. I., Shadurskaja L., Yarzhembiyskaja N., Kerczynski K.: Controlling the characteristics of photovoltaic cell based on their own semiconductors. Przeglad Elektrotechniczny 91(8), 2015, 81–85 [http://doi.org/10.15199/48.2015.08.21].
DOI: https://doi.org/10.15199/48.2015.08.21   Google Scholar

Wicinski M., Burgstaller W., Hassel A. W.: Lateral resolution in scanning Kelvin probe microscopy. Corrosion Science 104, 2016, 1–8 [http://doi.org/10.1016/j.corsci.2015.09.008].
DOI: https://doi.org/10.1016/j.corsci.2015.09.008   Google Scholar

Zharin A., Pantsialeyeu K., Kierczyński K.: Charge sensitive techniques in control of the homogeneity of optical metallic surfaces. Przegląd Elektrotechniczny 92(8), 2016, 190–193
  Google Scholar

[http://doi.org/10.15199/48.2016.08.52].
DOI: https://doi.org/10.15199/48.2016.08.52   Google Scholar

Zharin A., Pantsialeyeu K., Opielak M., Rogalski P.: Charge sensitive techniques in tribology studies. Przegląd Elektrotechniczny 92(11), 2016, 239–243 [http://doi.org/10.15199 / 48.2016.11.58].
DOI: https://doi.org/10.15199/48.2016.11.58   Google Scholar

Zisman W.: A new method of measuring contact potential differences in metals. Review of Scientific Instruments 3(7), 1932, 367–370 [http://doi.org/10.1063/1.1748947].
DOI: https://doi.org/10.1063/1.1748947   Google Scholar

Download


Published
2020-12-20

Cited by

Pantsialeyeu, K., Zharin, A., Gusev, O., Vorobey, R., Tyavlovsky, A., Tyavlovsky, K., & Svistun, A. (2020). DIGITAL CONTACT POTENTIAL PROBE IN STUDYING THE DEFORMATION OF DIELECTRIC MATERIALS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 10(4), 57–60. https://doi.org/10.35784/iapgos.2374

Authors

Kanstantsin Pantsialeyeu 
k.pantsialeyeu@bntu.by
Belarusian National Technical University, Instrumentation Engineering Faculty Belarus
http://orcid.org/0000-0001-7113-1815

Authors

Anatoly Zharin 

Belarusian National Technical University, Instrumentation Engineering Faculty Belarus
http://orcid.org/0000-0001-7213-4532

Authors

Oleg Gusev 

Belarusian National Technical University, Instrumentation Engineering Faculty Belarus
http://orcid.org/0000-0001-5180-1121

Authors

Roman Vorobey 

Belarusian National Technical University, Instrumentation Engineering Faculty Belarus
http://orcid.org/0000-0003-2851-6108

Authors

Andrey Tyavlovsky 

Belarusian National Technical University, Instrumentation Engineering Faculty Belarus
http://orcid.org/0000-0003-2579-1016

Authors

Konstantin Tyavlovsky 

Belarusian National Technical University, Instrumentation Engineering Faculty Belarus
http://orcid.org/0000-0001-8020-0165

Authors

Aliaksandr Svistun 

Belarusian National Technical University, Instrumentation Engineering Faculty Belarus
http://orcid.org/0000-0002-9593-8880

Statistics

Abstract views: 342
PDF downloads: 169