THE SYSTEM FOR COMPLEX MAGNETIC SUSCEPTIBILITY MEASUREMENT OF NANOPARTICLES WITH 3D PRINTED CARCASS FOR INTEGRATED RECEIVE COILS
Article Sidebar
Open full text
Issue Vol. 11 No. 1 (2021)
-
THE SYSTEM FOR COMPLEX MAGNETIC SUSCEPTIBILITY MEASUREMENT OF NANOPARTICLES WITH 3D PRINTED CARCASS FOR INTEGRATED RECEIVE COILS
Mateusz Midura, Przemysław Wróblewski, Damian Wanta, Grzegorz Domański, Mateusz Stosio, Jacek Kryszyn, Waldemar T. Smolik4-9
-
MAGNETOELECTRIC COUPLING MEASUREMENT TECHNIQUES IN MULTIFERROIC MATERIALS
Jakub Grotel10-14
-
METHODS FOR DETECTING FIRES IN ECOSYSTEMS USING LOW-RESOLUTION SPACE IMAGES
Valerii Shvaiko, Olena Bandurka, Vadym Shpuryk, Yevhen V. Havrylko15-19
-
GENERATING FIRE-PROOF CURTAINS BY EXPLOSION-PRODUCTION OF WATER AEROSOL AS AN ELEMENT OF FIRE-SAFETY ENGINEERING
Grzegorz Śmigielski20-23
-
METHODS FOR ASSESSMENT AND FORECASTING OF ELECTROMAGNETIC RADIATION LEVELS IN URBAN ENVIRONMENTS
Denys Bakhtiiarov, Oleksandr Lavrynenko, Nataliia Lishchynovska, Ivan Basiuk, Tetiana Prykhodko24-27
-
METHOD FOR DETERMINING THE ACTUAL PRESSURE VALUE IN A MV VACUUM INTERRUPTER
Michał Lech, Damian Kostyła28-31
-
OVERVIEW OF FEATURE SELECTION METHODS USED IN MALIGNANT MELANOMA DIAGNOSTICS
Magdalena Michalska32-35
-
DEVELOPING SOLUTION FOR USING ARTIFICIAL INTELLIGENCE TO OBTAIN MORE ACCURATE RESULTS OF THE BASIC PARAMETERS OF RADIO SIGNAL PROPAGATION
Andrii Shchepak, Volodimir Parkhomenko, Vyacheslav Parkhomenko36-39
-
APPLICATION OF THE MATRIX FACTOR ANALYSIS METHOD FOR DETERMINING PARAMETERS OF THE OBJECTIVE FUNCTION FOR TRANSPORT RISK MINIMIZATION
Serhii Zabolotnii, Sergii Mogilei40-43
-
DESCRIPTION OF ALGORITHMS FOR BALANCING NUMERICAL MATRICES AND THEIR DIVISION INTO HIERARCHICAL LEVELS ACCORDING TO THEIR TYPE AND COMPLEXITY
Yuriy Khanas, Michał Borecki44-49
-
POLYPARAMETRIC BLOCK CODING
Julia Milova, Yuri Melnik50-53
-
NO-CODE APPLICATION DEVELOPMENT ON THE EXAMPLE OF LOGOTEC APP STUDIO PLATFORM
Monika Moskal54-57
-
THE TRAINING APPLICATION BASED ON VR INTERACTION SCENARIOS – WITH EXAMPLES FOR LOGISTICS
Wojciech Wlodyka, Dariusz Bober58-61
-
INVESTIGATION OF THE DEPENDENCE OF THE STRUCTURE OF SHIFT INDEXES VECTORS ON THE PROPERTIES OF RING CODES IN THE MOBILE NETWORKS OF THE INTERNET OF THINGS
Vladislav Kravchenko, Olena Hryshchenko, Viktoriia Skrypnik, Hanna Dudarieva62-64
Archives
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
Main Article Content
DOI
Authors
Abstract
The article concerns the research on the properties of core-shell superparamagnetic nanoparticles in the context of their use in medicine for diagnostics and therapy. The article presents a system for impedance (AC) spectroscopy of nanoparticles with a new arrangement of receive coils. A significant modification was the position of the reference coil in relation to the receive coils as well as the method of winding and routing the wires on the carcass. The 3D printing technique was used in the production of the measuring coil system. The aim of the work was to experimentally verify the developed measurement system and analyze its properties. The system tests were carried out at low frequencies ranging from 2 to 50 kHz. Complex magnetic susceptibility was measured for superparamagnetic iron oxide nanoparticles in polymer shells in a physiological saline solution. The obtained results confirmed the relevance of the concept of the measurements. In summary, the observed properties of the realized system are discussed and further directions of its development are proposed.
Keywords:
References
Bogren S. et al.: Classification of Magnetic Nanoparticle Systems–Synthesis, Standardization and Analysis Methods in the NanoMag Project. International Journal of Molecular Sciences 16(9)/2015, 20308–20325 [http://doi.org/10.3390/ijms160920308]. DOI: https://doi.org/10.3390/ijms160920308
Graeser M. et al.: Analog receive signal processing for magnetic particle imaging. Med. Phys. 40(4)/2013, 042303 [http://doi.org/10.1118/1.4794482]. DOI: https://doi.org/10.1118/1.4794482
Harabech M. et al.: The Effect of the Magnetic Nanoparticle’s Size Dependence of the Relaxation Time Constant on the Specific Loss Power of Magnetic Nanoparticle Hyperthermia. Journal of Magnetism and Magnetic Materials 426/2017, 206–210 [http://doi.org/10.1016/j.jmmm.2016.11.079]. DOI: https://doi.org/10.1016/j.jmmm.2016.11.079
Hergt R. et al.: Magnetic Particle Hyperthermia: Nanoparticle Magnetism and Materials Development for Cancer Therapy. Journal of Physics Condensed Matter 18(38)/2006, S2919 [http://doi.org/10.1088/0953-8984/18/38/S26]. DOI: https://doi.org/10.1088/0953-8984/18/38/S26
Kishore K., Akbar S. A.: Evolution of Lock-In Amplifier as Portable Sensor Interface Platform: A Review. IEEE Sensors Journal 20(18)/2020, 10345–10354 [http://doi.org/10.1109/JSEN.2020.2993309]. DOI: https://doi.org/10.1109/JSEN.2020.2993309
Ludwig F. et al.: Analysis of AC Susceptibility Spectra for the Characterization of Magnetic Nanoparticles. IEEE Transactions on Magnetics 53(11)/2017, 10–13 [http://doi.org/10.1109/TMAG.2017.2693420]. DOI: https://doi.org/10.1109/TMAG.2017.2693420
Mahdavi Z. et al.: Core-Shell Nanoparticles Used in Drug Delivery-Microfluidics: A Review. RSC Advances 10(31)/2020, 18280–18295 [http://doi.org/10.1039/d0ra01032d]. DOI: https://doi.org/10.1039/D0RA01032D
Maity D., Ganeshlenin K.: Superparamagnetic Nanoparticles for Cancer Hyperthermia Treatment. Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy, Springer Berlin Heidelberg, 2019, 299–332 [http://doi.org/10.1007/978-3-662-59596-1_7]. DOI: https://doi.org/10.1007/978-3-662-59596-1_7
Reeves D. B., Weaver J. B.: Magnetic Nanoparticle Sensing: Decoupling the Magnetization from the Excitation Field. Journal of Physics D: Applied Physics 47(4)/2013, 45002 [http://doi.org/10.1088/0022-3727/47/4/045002]. DOI: https://doi.org/10.1088/0022-3727/47/4/045002
Sandler S. E. et al.: Best Practices for Characterization of Magnetic Nanoparticles for Biomedical Applications. Analytical Chemistry 91(22)/2019, 14159–14169 [http://doi.org/10.1021/acs.analchem.9b03518]. DOI: https://doi.org/10.1021/acs.analchem.9b03518
Šouc J. et al.: Calibration Free Method for Measurement of the AC Magnetization Loss. Superconductor Science and Technology 18(5)/2005, 592–595 [http://doi.org/10.1088/0953-2048/18/5/003]. DOI: https://doi.org/10.1088/0953-2048/18/5/003
Suhaimi N. S. et al.: A Resonant Type AC Magnetometer for Evaluation of Magnetic Nanoparticles. Hassan M. (eds) Intelligent Manufacturing & Mechatronics. Lecture Notes in Mechanical Engineering. Springer, Singapore 2018 [http://doi.org/10.1007/978-981-10-8788-2_9]. DOI: https://doi.org/10.1007/978-981-10-8788-2_9
Sun Y. et al.: An Improved Method for Estimating Core Size Distributions of Magnetic Nanoparticles via Magnetization Harmonics. Nanomaterials 10(9)/2020, 1–12 [http://doi.org/10.3390/nano10091623]. DOI: https://doi.org/10.3390/nano10091623
Valentini M. et al.: Diffusion NMR Spectroscopy for the Characterization of the Size and Interactions of Colloidal Matter: The Case of Vesicles and Nanoparticles. Journal of the American Chemical Society 126(7)/2004, 2142–2147 [http://doi.org/10.1021/ja037247r]. DOI: https://doi.org/10.1021/ja037247r
Vallejo-Fernandez G. et al.: Mechanisms of Hyperthermia in Magnetic Nanoparticles. Journal of Physics D: Applied Physics 46(31)/2013 [http://doi.org/10.1088/0022-3727/46/31/312001]. DOI: https://doi.org/10.1088/0022-3727/46/31/312001
Van De Loosdrecht M. M. et al.: A Novel Characterization Technique for Superparamagnetic Iron Oxide Nanoparticles: The Superparamagnetic Quantifier, Compared with Magnetic Particle Spectroscopy. Review of Scientific Instruments 90(2)/2019 [http://doi.org/10.1063/1.5039150]. DOI: https://doi.org/10.1063/1.5039150
Wróblewski P., Smolik W.: Coil design with litze wire for magnetic particle spectrometry. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 7(1)/2017, 150–153 [http://doi.org/10.5604/01.3001.0010.4605]. DOI: https://doi.org/10.5604/01.3001.0010.4605
Wu K. et al.: Magnetic Particle Spectroscopy: A Short Review of Applications Using Magnetic Nanoparticles. ACS Applied Nano Materials 3(6)/2020, 4972–89 [http://doi.org/10.1021/acsanm.0c00890]. DOI: https://doi.org/10.1021/acsanm.0c00890
Yang T. Q. et al.: Detection of Magnetic Nanoparticles with Ac Susceptibility Measurement. Physica C: Superconductivity and Its Applications 412–414/2004, 1496–1500 [http://doi.org/10.1016/j.physc.2004.01.146]. DOI: https://doi.org/10.1016/j.physc.2004.01.146
Quantum Design, MPMS Application Note 1070-207: Using PPMS Superconducting Magnets at Low Fields 2009.
Article Details
Abstract views: 583
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
