MAGNETOELECTRIC COUPLING MEASUREMENT TECHNIQUES IN MULTIFERROIC MATERIALS


Abstract

Magnetoelectric multiferroics are solid-state materials which exhibit a coupling between ferroelectric and magnetic orders. This phenomenon is known as the magnetoelectric (ME) effect. Multiferroic materials possess a wide range of potential applications in such fields as metrology, electronics, energy harvesting & conversion, and medicine. Multiferroic research is facing two main challenges. Firstly, scientists are continuously trying to obtain a material with sufficiently strong, room-temperature ME coupling that would enable its commercial application. Secondly, the measurement techniques used in multiferroic research are often problematic to implement in a laboratory setting and fail to yield reproducible results. The aim of the present work is to discuss three most commonly used methods in multiferroic studies; the lock-in technique, the Sawyer-Tower (S-T) circuit and dielectric constant measurements. The paper opens with a general description of multiferroics which is followed by mathematical representation of the ME effect. The main body deals with the description of the aforementioned measurement techniques. The article closes with a conclusion and outlook for future research.


Keywords

multiferroics; magnetoelectric effect; Sawyer-Tower circuit; magnetocapacitance

Bain A. K., Chand P.: Ferroelectrics: Principles and Applications. Wiley, 2017 DOI: https://doi.org/10.1002/9783527805310

Bonaedy T, Koo Y. S., Sung K. D., Jung J. H.: Resistive magnetodielectric property of polycrystalline γ-Fe2O3. Applied Physics Letters 91(13)/2007, 132901 [http://doi.org/10.1063/1.2790474]. DOI: https://doi.org/10.1063/1.2790474

Catalan G.: Magnetocapacitance without magnetoelectric coupling. Applied Physics Letters 88(10)/2006, 102902 [http://doi.org/10.1063/1.2177543]. DOI: https://doi.org/10.1063/1.2177543

Cheong S.-W., Mostovoy M.: Multiferroics: a magnetic twist for ferroelectricity. Nature Materials 6(1)/2007, 13–20 [http://doi.org/10.1038/nmat1804]. DOI: https://doi.org/10.1038/nmat1804

Das C., Shahee A., Lalla N., Shripathi T.: A simple and low cost Sawyer-Tower ferro-electric loop tracer with variable frequency and compensation circuit. Proceedings of the 54th DAE Solid State Physics Symposium, 2009, 439.

Dawber M., Rabe K. M, Scott J. F.: Physics of thin-film ferroelectric oxides. Reviews of Modern Physics 77(4)/2005, 1083 [http://doi.org/10.1103/RevModPhys.77.1083]. DOI: https://doi.org/10.1103/RevModPhys.77.1083

Duong G. V., Groessinger R., Schoenhart M., Bueno-Basques D.: The lock-in technique for studying magnetoelectric effect. Journal of Magnetism and Magnetic Materials 316(2)/2007, 390-393 [http://doi.org/10.1016/j.jmmm.2007.03.185]. DOI: https://doi.org/10.1016/j.jmmm.2007.03.185

Eerenstein W., Mathur N. D., Scott J. F.: Multiferroic and magnetoelectric materials. Nature (7104)/2006, 759–765 [http://doi.org/10.1038/nature05023]. DOI: https://doi.org/10.1038/nature05023

Fiebig M., Lottermoser T., Meier D., Trassin M.: The evolution of multiferroics. Nature Reviews Materials 1/2016, 16046 [http://doi.org/10.1038/natrevmats.2016.46]. DOI: https://doi.org/10.1038/natrevmats.2016.46

Fiebig M.: Revival of the magnetoelectric effect. Journal of Physics D: Applied Physics 38(8)/2005, R123 [http://doi.org/10.1088/0022-3727/38/8/R01]. DOI: https://doi.org/10.1088/0022-3727/38/8/R01

Fuentes-Cobas L. E., Matutes-Aquino J. A., Fuentes-Montero M. E.: Handbook of Magnetic Materials, Chapter 3- Magnetoelectricity. Elsevier, 2011 DOI: https://doi.org/10.1016/B978-0-444-53780-5.00003-X

Guobin C., Hui Y., Xiaoming Z., Jun L., Jun T.: Clarification of the Magnetocapacitance Mechanism for Fe3O4-PDMS Nanocomposites. Journal of Nanomaterials 2015/2015, 982174 [http://doi.org/10.1155/2015/982174]. DOI: https://doi.org/10.1155/2015/982174

Hishiyama Y., Kaburagi Y., Inagaki M.: Materials Science and Engineering of Carbon: Characterization. Elsevier, 2016

Khomskii D.: Classifying Multiferroics: Mechanisms and Effects. Physics 2/2009 [http://doi.org/10.1103/Physics.2.20]. DOI: https://doi.org/10.1103/Physics.2.20

Kimura T.: Magnetoelectric Hexaferrites. Annual Review of Condensed Matter Physics 3(1)/2012, 93–110 [http://doi.org/10.1146/annurev-conmatphys-020911-125101]. DOI: https://doi.org/10.1146/annurev-conmatphys-020911-125101

Kitagawa Y., Hiraoka Y., Honda T., Ishikura T., Nakamura H., Kimura T.: Low-field magnetoelectric effect at room temperature. Nature Materials 9(10)/2010, 797–802 [http://doi.org/10.1038/nmat2826]. DOI: https://doi.org/10.1038/nmat2826

Kreisel J., Kenzelmann M.: Multiferroics – the challenge of coupling magnetism and ferroelectricity. Europhysics News 40(5)/2009, 17–20 [http://doi.org/10.1051/epn/2009702]. DOI: https://doi.org/10.1051/epn/2009702

Kuila S., Tiwary S., Sahoo M. R., Barik A., Vishwakarma P. N.: Measurement of temperature dependent magnetoelectricity in BiFe(1−x)CoxO3; x = 0, 0.01, 0.02. Journal of Alloys and Compounds 709/2017, 158–164 [http://doi.org/10.1016/j.jallcom.2017.03.118]. DOI: https://doi.org/10.1016/j.jallcom.2017.03.118

Mahesh Kumar M., Srinivas A., Suryanarayana S. V., Kumar G. S., Bhimasankaram T.: An experimental setup for dynamic measurement of magnetoelectric effect. Bulletin of Materials Science 21(3)/1998, 251–255 [http://doi.org/10.1007/BF02744978]. DOI: https://doi.org/10.1007/BF02744978

Parish M. M.: Magnetocapacitance without magnetism. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372(2009)/2014 [http://doi.org/10.1098/rsta.2012.0452]. DOI: https://doi.org/10.1098/rsta.2012.0452

Rivera J. P.: A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics. The European Physical Journal B 71/2009, 299 [http://doi.org/10.1140/epjb/e2009-00336-7]. DOI: https://doi.org/10.1140/epjb/e2009-00336-7

Rivera J. P.: On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr-Cl boracite. Ferroelectrics 161(1)/1994, 165–180 [http://doi.org/10.1080/00150199408213365]. DOI: https://doi.org/10.1080/00150199408213365

Serway R., Jewett Jr. J. W.: Physics for Scientists and Engineers. Cengage Learning, 2014.

Siratori K., Kohn K., Kita E.: Magnetoelectric Effect in Magnetic Materials. Acta Physica Polonica A 81/1992, 431–466 [http://doi.org/10.12693/APhysPolA.81.431]. DOI: https://doi.org/10.12693/APhysPolA.81.431

Spaldin N. A., Cheong S.-W., Ramesh R.: Multiferroics: Past, present, and future. Physics Today 63(10)/2010, 38–43 [http://doi.org/10.1063/1.3502547]. DOI: https://doi.org/10.1063/1.3502547

Stewart M., Cain M., Hall D.: Ferroelectric Hysteresis Measurement and Analysis. NPL Report 152, 1999

Turik A. V., Pavlenko A. V.: Magnetodielectric Effect and Magnetoelectricity in Multiferroics and Heterogeneous Systems: Modeling and Experiment. Ferroelectrics 444(1)/2013, 53–59 [http://doi.org/10.1080/00150193.2013.786308]. DOI: https://doi.org/10.1080/00150193.2013.786308

Vopson M. M., Fetisov Y. K., Caruntu G., Srinivasan G.: Measurement Techniques of the Magneto-Electric Coupling in Multiferroics. Materials 10(8)/2017 [http://doi.org/10.3390/ma10080963]. DOI: https://doi.org/10.3390/ma10080963

Vopson M. M.: Fundamentals of Multiferroic Materials and Their Possible Applications. Critical Reviews in Solid State and Materials Sciences 40(4)/2015, 223–250 [http://doi.org/10.1080/10408436.2014.992584]. DOI: https://doi.org/10.1080/10408436.2014.992584

Stanford Research Systems, Inc., Model SR830 DSP Lock-In Amplifier. User Manual, 2011.

http://physicsopenlab.org/2016/10/10/shot-noise-and-electron-charge/ (available: 02.2021).

http://www.scholarpedia.org/article/1/f_noise (available: 02.2021).

https://techweb.rohm.com/knowledge/emc/s-emc/01-s-emc/6943 (available: 02.2021).

https://www.electronics-notes.com/articles/test-methods/lcr-meter-bridge/primer-basics.php (available: 02.2021)

https://www.voltech.com/Products/DC1000A/Howitworks.aspx (available: 02.2021).

Download

Published : 2021-03-31


Grotel, J. (2021). MAGNETOELECTRIC COUPLING MEASUREMENT TECHNIQUES IN MULTIFERROIC MATERIALS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 11(1), 10-14. https://doi.org/10.35784/iapgos.2583

Jakub Grotel  j.grotel@pollub.pl
Lublin University of Technology, Faculty of Electrical Engineering and Computer Science  Poland
http://orcid.org/0000-0001-8428-2292