FUZZY APPROACH TO DEVICE LOCALIZATION BASED ON WIRELESS NETWORK SIGNAL STRENGTH
Article Sidebar
Open full text
Issue Vol. 11 No. 2 (2021)
-
A STEP TOWARDS THE MAJORITY-BASED CLUSTERING VALIDATION DECISION FUSION METHOD
Taras Panskyi, Volodymyr Mosorov4-13
-
FUZZY APPROACH TO DEVICE LOCALIZATION BASED ON WIRELESS NETWORK SIGNAL STRENGTH
Michał Socha, Wojciech Górka, Marcin Michalak14-21
-
APPLICATION OF DIGITAL IMAGE PROCESSING METHODS FOR OBTAINING CONTOURS OF OBJECTS ON ULTRASOUND IMAGES OF THE HIP JOINT
Pavlo Ratushnyi, Yosyp Bilynskyi, Stepan Zhyvotivskyi22-25
-
OVERVIEW OF THE USE OF X-RAY EQUIPMENT IN ELECTRONICS QUALITY TESTS
Magdalena Michalska26-29
-
SIMULATION AND EXPERIMENTAL RESEARCH OF CLAW POLE MACHINE WITH A HYBRID EXCITATION AND LAMINATED ROTOR CORE
Marcin Wardach, Paweł Prajzendanc, Kamil Cierzniewski, Michał Cichowicz, Szymon Pacholski, Mikołaj Wiszniewski, Krzysztof Baradziej, Szymon Osipowicz30-35
-
BATTERY SWAPPING STATIONS FOR ELECTRIC VEHICLES
Aleksander Chudy36-39
-
OVERVOLTAGE PROTECTION OF PV MICROINSTALLATIONS – REGULATORY REQUIREMENTS AND SIMULATION MODEL
Klara Janiga40-43
-
DETERMINATION OF HYDRODYNAMIC PARAMETERS OF THE SEALED PRESSURE EXTRACTOR
Nataliaya Kosulina, Stanislav Kosulin, Kostiantyn Korshunov, Tetyana Nosova, Yana Nosova44-47
-
DEVELOPMENT OF A DEVICE FOR MEASURING AND ANALYZING VIBRATIONS
Anzhelika Stakhova, Volodymyr Kvasnikov48-51
-
METHOD OF OBTAINING THE SPECTRAL CHARACTERISTICS OF THE SCANNING PROBE MICROSCOPE
Mariia Kataieva, Vladimir Kvasnikov52-55
-
BROADBAND SATELLITE DATA NETWORKS IN THE CONTEXT OF AVAILABLE PROTOCOLS AND DIGITAL PLATFORMS
ENGLISHJacek Wilk-Jakubowski56-60
Archives
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
Main Article Content
DOI
Authors
Michal.Socha@emag.lukasiewicz.gov.pl
Wojciech.Gorka@emag.lukasiewicz.gov.pl
Marcin.Michalak@emag.lukasiewicz.gov.pl
Abstract
The paper presents an original approach to device location detection in a building. The new method is based on a map of individual interiors, drawn up based on the measurements of the strength of wireless network signals for each building venue. The device is initially assigned to all venues whose descriptions sufficiently correspond with the current measurements taken by the device. A fuzzy assignment level for each of the potentially considered venues depends on the difference between the averaged network strengths for the venue and the signal strengths currently measured with the device for localization purposes. Ultimately, the device is assigned to the venue with the highest level of assignment.
Keywords:
References
Bahl P., Padmanabhan V. N.: RADAR: An in-building RF-based user location and tracking system. Proceedings IEEE INFOCOM 2000, 775–784.
Benavente-Peces C. et al.: Global System for Localization and Guidance of Dependant People: Indoor and Outdoor Technologies Integration. Lecture Notes in Computer Science 5597, 2009, 82–89. DOI: https://doi.org/10.1007/978-3-642-02868-7_11
Chintalapudi K., PadmanabhaIyer A., Padmanabhan V.: Indoor localization without the pain. Proceedings of the sixteenth annual international conference on Mobile computing and networking, 2010, 173–184. DOI: https://doi.org/10.1145/1859995.1860016
Chung J. et al.: Indoor Location Sensing Using Geo-Magnetism. Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services, 2011, 141–154. DOI: https://doi.org/10.1145/1999995.2000010
Enge P., Misra P.: Special issue on Global Positioning System. Proceedings of the IEEE 87(1), 1999, 3–15. DOI: https://doi.org/10.1109/JPROC.1999.736338
Galván-Tejada C. E., Carrasco-Jimenez J. C., Brena R.: Location Identification Using a Magnetic-Field-Based FFT Signature, Lecture Notes in Computer Science 8276, 2013, 9–16. DOI: https://doi.org/10.1016/j.procs.2013.06.071
Garcia-Valverde, T., Garcia-Sola, A., Hagras, H., Dooley, J. A., Callaghan, V., Botia, J. A.: A fuzzy logic-based system for indoor localization using WiFi in ambient intelligent environments. IEEE Transactions on Fuzzy Systems 21(4), 2013, 702–718. DOI: https://doi.org/10.1109/TFUZZ.2012.2227975
Górka W., Piasecki A. Socha M.: Mobile application supporting universal access to culture, taking into account the needs of disabled people. Proceedings of the 11th Scientific Conference Internet in the Information Society, 2016, 191–201.
Hammadi O.A., Hebsi A. A., Zemerly M. J., Ng J. W. P.: Indoor localization and guidance using portable smartphones. Proceedings of the IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, 2012, 337–341. DOI: https://doi.org/10.1109/WI-IAT.2012.262
Hernández N., Alonso J. M., Ocaña M.: Hierarchical Approach to Enhancing Topology-based WiFi Indoor Localization in Large Environments. Journal of Multiple-Valued Logic and Soft Computing 26(3-5), 2016, 221–241.
Herranz, F., Llamazares, Á., Molinos, E., Ocaña, M., Sotelo, M. A.: WiFi SLAM algorithms: An experimental comparison. Robotica, 34(4), 2016, 837–858. DOI: https://doi.org/10.1017/S0263574714001908
Krumm J., Horvitz E.: Locadio: Inferring motion and location from Wi-Fi signal strengths. Prpceedings of The First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, 2004, 4–13.
Liu H. et al: Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 37:6, 2007, 1067–1080. DOI: https://doi.org/10.1109/TSMCC.2007.905750
López E., Barea R., Bergasa L. M., Escudero M. S.: A human-robot cooperative learning system for easy installation of assistant robots in new working environments. Journal of Intelligent and Robotic System 40(3), 2004, 233–265. DOI: https://doi.org/10.1023/B:JINT.0000038952.66083.d1
Polito S. et al.: Performance evaluation of active RFID location systems based on RF power measures. IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, 2007, 1–5. DOI: https://doi.org/10.1109/PIMRC.2007.4394676
Priyantha N. B., Chakraborty A., Balakrishnan H.: The cricket location support system. Proceedings of the Annual International Conference on Mobile Computing and Networking, 2000, 32–43. DOI: https://doi.org/10.1145/345910.345917
Steinbuss S., Holtkamp B., Opriel S.: HANDELkompetent – Situation Aware Learning in Retail. Procedia Manufacturing 9, 2017, 245–253. DOI: https://doi.org/10.1016/j.promfg.2017.04.048
Want R., Hopper A., Falcao V., Gibbons J.: The Active Badge Location System. ACM Transactions on Information Systems 10(1), 1992, 91–102. DOI: https://doi.org/10.1145/128756.128759
Youssef M., Agrawala A.: The Horus WLAN location determination system. Proceedings of the 3rd international conference on Mobile systems, applications, and services, 2005, 205–218. DOI: https://doi.org/10.1145/1067170.1067193
Zadeh L.: Fuzzy sets. Information and Control 8(3), 1965, 338–353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X
Zaruba G., Huber M., Kamangar F., Chlamtac I.: Indoor location tracking using RSSI readings from a single Wi-Fi access point. Wireless Networks 13(2), 2007, 221–235. DOI: https://doi.org/10.1007/s11276-006-5064-1
Article Details
Abstract views: 380
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
