GRANULAR REPRESENTATION OF THE INFORMATION POTENTIAL OF VARIABLES - APPLICATION EXAMPLE
Article Sidebar
Open full text
Issue Vol. 11 No. 3 (2021)
-
USING STEALTH TECHNOLOGIES IN MOBILE ROBOTIC COMPLEXES AND METHODS OF DETECTION OF LOW-SIGHTED OBJECTS
Andrii Rudyk, Andriy Semenov, Olena Semenova, Sergey Kakovkin4-8
-
SMART POWER WHEELCHAIR: PROBLEMS AND CHALLENGES OF PRODUCT APPROACH
Serge Ageyev, Andrii Yarovyi9-13
-
IMPROVING THE ACCURACY OF VIBRATION MEASUREMENT RESULTS
Anzhelika Stakhova, Volodymyr Kvasnikov14-17
-
CUSTOMIZATION BASED ON CAD AUTOMATION IN PRODUCTION OF MEDICAL SCREWS BY 3D PRINTING
Piotr Bednarczuk18-21
-
METHOD AND GAS DISCHARGE VISUALIZATION TOOL FOR ANALYZING LIQUID-PHASE BIOLOGICAL OBJECTS
Yaroslav A. Kulyk, Bohdan P. Knysh, Roman V. Maslii, Roman N. Kvyetnyy, Valentyna V. Shcherba, Anatoliy Ia. Kulyk22-29
-
OVERVIEW OF SKIN DIAGNOSTIC TECHNIQUES BASED ON MULTILAYER SKIN MODELS AND SPECTROPHOTOMETRICS
Magdalena Michalska30-33
-
DYNAMIC HANDWRITTEN SIGNATURE IDENTIFICATION USING SPIKING NEURAL NETWORK
Vladislav Kutsman, Oleh Kolesnytskyj34-39
-
GRANULAR REPRESENTATION OF THE INFORMATION POTENTIAL OF VARIABLES - APPLICATION EXAMPLE
Adam Kiersztyn, Agnieszka Gandzel, Maciej Celiński, Leopold Koczan40-44
-
INFLUENCE OF A PLATFORM GAME CONTROL METHOD ON A PLAYER’S EFFECTIVENESS
Bartosz Wijatkowski, Jakub Smołka, Maciej Celiński45-49
-
A REVIEW OF CURRENTLY USED ISOLATED DC-DC CONVERTERS
Damian Dobrzański50-54
Archives
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
Main Article Content
DOI
Authors
Abstract
With the introduction to the science paradigm of Granular Computing, in particular, information granules, the way of thinking about data has changed gradually. Both specialists and scientists stopped focusing on the single data records themselves, but began to look at the analyzed data in a broader context, closer to the way people think. This kind of knowledge representation is expressed, in particular, in approaches based on linguistic modelling or fuzzy techniques such as fuzzy clustering. Therefore, especially important from the point of view of the methodology of data research, is an attempt to understand their potential as information granules. In this study, we will present special cases of using the innovative method of representing the information potential of variables with the use of information granules. In a series of numerical experiments based on both artificially generated data and ecological data on changes in bird arrival dates in the context of climate change, we demonstrate the effectiveness of the proposed approach using classic, not fuzzy measures building information granules.
Keywords:
References
Altonji J. G., Elder T. E., Taber C. R.: Selection on observed and unobserved variables: Assessing the effectiveness of catholic schools. Journal of Political Economy 113(1), 2005, 151–184 [http://doi.org/10.1086/426036]. DOI: https://doi.org/10.1086/426036
Barbieri M. M., Berger J. O.: Optimal predictive model selection. Ann. Statist. 32(3), 2004, 870–897 [http://doi.org/10.1214/009053604000000238]. DOI: https://doi.org/10.1214/009053604000000238
Bargiela A., Pedrycz W.: Human-centric information processing through granular modelling. Springer Science & Business Media 182, 2009 [http://doi.org/10.1007/978-3-540-92916-1]. DOI: https://doi.org/10.1007/978-3-540-92916-1
Bargiela A., Pedrycz W.: Granular computing. In: Handbook on Computational Intelligence. World Scientific, 2016 [http://doi.org/10.1142/9789814675017_0002]. DOI: https://doi.org/10.1142/9789814675017_0002
Bursac Z., Gauss, C. H., Williams D. K., Hosmer D. W.: Purposeful selection of variables in logistic regression. Source Code for Biology and Medicine 3(1), 2008, 17 [http://doi.org/10.1186/1751-0473-3-17]. DOI: https://doi.org/10.1186/1751-0473-3-17
Gauch H.: Model selection and validation for yield trials with interaction. Biometrics 44(3), 1988, 705–715 [http://doi.org/10.2307/2531585]. DOI: https://doi.org/10.2307/2531585
Geisser S., Eddy W. F.: A predictive approach to model selection. Journal of the American Statistical Association 74(365), 1979, 153–160 [http://doi.org/10.1080/01621459.1979.10481632]. DOI: https://doi.org/10.1080/01621459.1979.10481632
Genuer R., Poggi J. M., Tuleau-Malot C.: Variable selection using random forests. Pattern Recognition Letters 31(14), 2010, 2225–2236 [http://doi.org/10.1016/j.patrec.2010.03.014]. DOI: https://doi.org/10.1016/j.patrec.2010.03.014
Johnson J. B., Omland K. S.: Model selection in ecology and evolution. Trends in Ecology & Evolution 19(2), 2004, 101–108 [http://doi.org/10.1016/j.tree.2003.10.013]. DOI: https://doi.org/10.1016/j.tree.2003.10.013
Kiersztyn A., Karczmarek P., Lopucki R., Pedrycz W., Al E., Kitowski I., Zbyryt A.: Data imputation in related time series using fuzzy set-based techniques. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow 2020, 1–8. DOI: https://doi.org/10.1109/FUZZ48607.2020.9177617
Kiersztyn A., Karczmarek P., Kiersztyn K., Pedrycz W.: Detection and Classification of Anomalies in Large Data Sets on the Basis of Information Granules. IEEE Transactions on Fuzzy Systems, 2021 [htp://doi.org/10.1109/TFUZZ.2021.3076265]. DOI: https://doi.org/10.1109/FUZZ45933.2021.9494466
Kiersztyn A., Karczmarek P., Kiersztyn K., Pedrycz W.: The Concept of Detecting and Classifying Anomalies in Large Data Sets on a Basis of Information Granules. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2020, 1–7. DOI: https://doi.org/10.1109/TFUZZ.2021.3076265
Kiersztyn A., Karczmarek P., Kiersztyn K., Łopucki R., Grzegórski S., Pedrycz W.: The Concept of Granular Representation of the Information Potential of Variables. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2021, 1–6. DOI: https://doi.org/10.1109/FUZZ45933.2021.9494582
Laud P.W., Ibrahim J.G.: Predictive model selection. Journal of the Royal Statistical Society: Series B (Methodological) 57(1), 1995, 247–262 [http://doi.org/10.1111/j.2517-6161.1995.tb02028]. DOI: https://doi.org/10.1111/j.2517-6161.1995.tb02028.x
Mac Nally R.: Regression and model-building in conservation biology, biogeography and ecology: the distinction between – and reconciliation of – "predictive" and "explanatory" models. Biodiversity & Conservation 9(5), 2000, 655–671 [http://doi.org/10.1023/A:1008985925162]. DOI: https://doi.org/10.1023/A:1008985925162
Olivera A. R., Roesler V., Iochpe C., Schmidt M. I., Vigo A., Barreto S. M., Duncan B. B.: Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes-elsa-brasil: Accuracy study. Sao Paulo Medical Journal 135(3), 2017, 234–246 [http://doi.org/10.1590/1516-3180.2016.0309010217]. DOI: https://doi.org/10.1590/1516-3180.2016.0309010217
Pearce-Higgins J. W., Green R. E.: Birds and climate change: Impacts and conservation responses. Cambridge University Press 2014. DOI: https://doi.org/10.1017/CBO9781139047791
Pedrycz W.: Knowledge-based clustering: From data to information granules. John Wiley & Sons, 2005 [http://doi.org/10.5555/1044924]. DOI: https://doi.org/10.1002/0471708607
Piironen J., Vehtari A.: Projection predictive model selection for Gaussian processes. IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), Salerno 2016, 1–6. DOI: https://doi.org/10.1109/MLSP.2016.7738829
Piironen J., Vehtari A.: Comparison of Bayesian predictive methods for model selection. Statistics and Computing 27(3), 2017, 711–735. [http://doi.org/10.1007/s11222-016-9649-y]. DOI: https://doi.org/10.1007/s11222-016-9649-y
ptop.org.pl (2016), (available: 01.10.2020).
Schafer B. C., Wakabayashi K.: Machine learning predictive modelling high-level synthesis design space exploration. IET Computers & Digital Techniques 6(3), 2012, 153–159 [http://doi.org/10.1049/iet-cdt.2011.0115]. DOI: https://doi.org/10.1049/iet-cdt.2011.0115
Smith A., Naik P. A., Tsai C. L.: Markov-switching model selection using Kullback-Leibler divergence. Journal of Econometrics 134(2), 2006, 553–577 [http://doi.org/10.1016/j.jeconom.2005.07.005]. DOI: https://doi.org/10.1016/j.jeconom.2005.07.005
Stephens P. A., Mason L. R., Green R. E., Gregory R. D., Sauer J. R., Alison J., Aunins A., Brotons L., Butchart S. H., Campedelli T., et al.: Consistent response of bird populations to climate change on two continents. Science 352(6281), 2016, 84–87 [http://doi.org/10.1126/science.aac4858]. DOI: https://doi.org/10.1126/science.aac4858
Symonds M. R., Moussalli A.: A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion. Behavioral Ecology and Sociobiology 65(1), 2011, 13–21 [http://doi.org/10.1007/s00265-010-1037-6]. DOI: https://doi.org/10.1007/s00265-010-1037-6
Article Details
Abstract views: 413
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
