SMART POWER WHEELCHAIR: PROBLEMS AND CHALLENGES OF PRODUCT APPROACH
Article Sidebar
Open full text
Issue Vol. 11 No. 3 (2021)
-
USING STEALTH TECHNOLOGIES IN MOBILE ROBOTIC COMPLEXES AND METHODS OF DETECTION OF LOW-SIGHTED OBJECTS
Andrii Rudyk, Andriy Semenov, Olena Semenova, Sergey Kakovkin4-8
-
SMART POWER WHEELCHAIR: PROBLEMS AND CHALLENGES OF PRODUCT APPROACH
Serge Ageyev, Andrii Yarovyi9-13
-
IMPROVING THE ACCURACY OF VIBRATION MEASUREMENT RESULTS
Anzhelika Stakhova, Volodymyr Kvasnikov14-17
-
CUSTOMIZATION BASED ON CAD AUTOMATION IN PRODUCTION OF MEDICAL SCREWS BY 3D PRINTING
Piotr Bednarczuk18-21
-
METHOD AND GAS DISCHARGE VISUALIZATION TOOL FOR ANALYZING LIQUID-PHASE BIOLOGICAL OBJECTS
Yaroslav A. Kulyk, Bohdan P. Knysh, Roman V. Maslii, Roman N. Kvyetnyy, Valentyna V. Shcherba, Anatoliy Ia. Kulyk22-29
-
OVERVIEW OF SKIN DIAGNOSTIC TECHNIQUES BASED ON MULTILAYER SKIN MODELS AND SPECTROPHOTOMETRICS
Magdalena Michalska30-33
-
DYNAMIC HANDWRITTEN SIGNATURE IDENTIFICATION USING SPIKING NEURAL NETWORK
Vladislav Kutsman, Oleh Kolesnytskyj34-39
-
GRANULAR REPRESENTATION OF THE INFORMATION POTENTIAL OF VARIABLES - APPLICATION EXAMPLE
Adam Kiersztyn, Agnieszka Gandzel, Maciej Celiński, Leopold Koczan40-44
-
INFLUENCE OF A PLATFORM GAME CONTROL METHOD ON A PLAYER’S EFFECTIVENESS
Bartosz Wijatkowski, Jakub Smołka, Maciej Celiński45-49
-
A REVIEW OF CURRENTLY USED ISOLATED DC-DC CONVERTERS
Damian Dobrzański50-54
Archives
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
Main Article Content
DOI
Authors
Abstract
This paper focuses on intelligent assistant for power wheelchair (PW) usage in home conditions. Especially in the context of PW intelligent assistant as a consumer product. The main problematic aspects and challenges of smart PW in real application are noted. The approach to formation of system requirements and their classification is offered. The research results proposed and implemented in the ongoing Mobilis project for smart PW. Further prospects of research and development are noted. Also, it is stated that the implementation of smart PW technology opens possibilities to effective integration with new control methods (including brain-computer interfaces).
Keywords:
References
Ageyev S.: Product Approach to Autonomous Power Wheelchair. ResearchGate. September 2020 [http://researchgate.net/publication/344045604_Product_Approach_to_Autonomous_Power_Wheelchair].
Ageyev S., Yarovyi A.: Intelligent Assist Technology for Power Wheelchair: Problems and Challenges of Product Approach – Brain Controlling Technology for Assistive Devices. Tech Day Online Meeting – DEMACH Event- und Veranstaltungs GmbH, Berlin, 2021.
Ageyev S., Yarovyi A.: Intelligent Assistant for Power Wheelchair. L Scientific and Technical Conference of Vinnytsia National Technical University 2021, [https://conferences.vntu.edu.ua/index.php/all-fitki/all-fitki-2021/paper/view/12943/10866].
Arledge S., Armstrong W., Babinec M., Dicianno B. E., Digiovine C., Dyson-Hudson T., Stogner J.: RESNA Wheelchair Service Provision Guide. RESNA (NJ1) 2011.
Cascado D. et al.: A Smart Electric Wheelchair Using UPnP. In: Cai Y., Abascal J. (eds): Ambient Intelligence in Everyday Life. Lecture Notes in Computer Science 3864. Springer, Berlin, Heidelberg 2006, [https://doi.org/10.1007/11825890_14]. DOI: https://doi.org/10.1007/11825890_14
Fehr L, Langbein W. E., Skaar S. B.: Adequacy of power wheelchair control interfaces for persons with severe disabilities: a clinical survey. J Rehabil Res Dev. 37(3), 2000, 353-60 [https://www.ncbi.nlm.nih.gov/pubmed/10917267].
Ghorbel M., Pineau J., Gourdeau R. et al.: A Decision-Theoretic Approach for the Collaborative Control of a Smart Wheelchair. Int. J. of Soc. Robotics 10, 2018, 131–145 [https://doi.org/10.1007/s12369-017-0434-7]. DOI: https://doi.org/10.1007/s12369-017-0434-7
Hartman A., Nandikolla V. K.: Human-Machine Interface for a Smart Wheelchair. Journal of Robotics 2019 [https://doi.org/10.1155/2019/4837058]. DOI: https://doi.org/10.1155/2019/4837058
Joshi M. K., Gupta M. V., Gosavi M. M., Wagh M. S.: A multifunctional smart wheelchair. Int. J. Adv. Res. Electron. Commun. Eng. 4(5), 2015, 1281–1284.
Karmarkar A. M., Dicianno B. E., Graham J. E., Cooper R., Kelleher A., Cooper R. A.: Factors associated with provision of wheelchairs in older adults. Assistive Technology 24(3), 2012, 155–167. DOI: https://doi.org/10.1080/10400435.2012.659795
Leaman J., La H. M.: A Comprehensive Review of Smart Wheelchairs: Past, Present, and Future. IEEE Transactions on Human-Machine Systems 47(4), 2017, 486–499 [http://doi.org/10.1109/THMS.2017.2706727]. DOI: https://doi.org/10.1109/THMS.2017.2706727
Madokoro H., Shirai K., Sato K., Shimoi N.: Basic Design of Visual Saliency Based Autopilot System Used for Omnidirectional Mobile Electric Wheelchair. Computer Science and Information Technology 3(5), 2015, 171–186 [http://doi.org/10.13189/csit.2015.030503]. DOI: https://doi.org/10.13189/csit.2015.030503
Mobilis Electric Wheelchair Autopilot [http://mobilis.io] (available: 16.08.2021).
Sanders D. et al.: Intelligent Control and HCI for a Powered Wheelchair Using a Simple Expert System and Ultrasonic Sensors. In: Arai K., Kapoor S., Bhatia R. (eds): Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing 1252. Springer, Cham. [https://doi.org/10.1007/978-3-030-55190-2_42]. DOI: https://doi.org/10.1007/978-3-030-55190-2_42
Sanders D., Okono O., Langner M., Hassan M., Khaustov S., Omoarebun P.: Using a Simple Expert System to Assist a Powered Wheelchair User. In: Bi Y., Bhatia R., Kapoor S. (eds): Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing 1037. Springer, Cham. [https://doi.org/10.1007/978-3-030-29516-5_50]. DOI: https://doi.org/10.1007/978-3-030-29516-5_50
Simpson R. C.: Smart wheelchairs: A literature review. Journal of Rehabilitation Research and Development 42(4), 2005, 423–436. DOI: https://doi.org/10.1682/JRRD.2004.08.0101
Simpson R. C., LoPresti E. F., Cooper R. A.: How many people would benefit from a smart wheelchair? Journal of Rehabilitation Research and Development 45(1), 2008, 53–72. DOI: https://doi.org/10.1682/JRRD.2007.01.0015
Simpson R., LoPresti E., Hayashi S., Nourbakhsh I.: The Smart Wheelchair Component System. Journal of Rehabilitation Research & Development 41(3B), 2004, 429–442 [https://www.rehab.research.va.gov/jour/04/41/3b/simpson.html] DOI: https://doi.org/10.1682/JRRD.2003.03.0032
Sonenblum S. E., Sprigle S., Harris F. H., Maurer C. L.: Characterization of Power Wheelchair Use in the Home and Community 2008 [https://smartech.gatech.edu/bitstream/handle/1853/36721/Sonenblum_etal_CharacterizationofPowerWCUse_ArchivesPhysMed&Rehab2008_SmartTechversion.pdf] DOI: https://doi.org/10.1016/j.apmr.2007.09.029
Sturnieks D. L., George R. St, Lord S. R.: Balance disorders in the elderly, Neurophysiologie Clinique/Clinical Neurophysiology 38(6), 2008, 467–478 [https://doi.org/10.1016/j.neucli.2008.09.001]. DOI: https://doi.org/10.1016/j.neucli.2008.09.001
Viswanathan P. et al.: Smart Wheelchairs in Assessment and Training (SWAT): State of the Field 2018 [https://agewell-nce.ca/publications/position-papers]. DOI: https://doi.org/10.4324/9781315368788-5
Viswanathan P., Zambalde E. P., Foley G. et al.: Intelligent wheelchair control strategies for older adults with cognitive impairment: user attitudes, needs, and preferences. Autonomous Robots 41, 2017, 539–554 [https://doi.org/10.1007/s10514-016-9568-y]. DOI: https://doi.org/10.1007/s10514-016-9568-y
White Paper on Aging Society 2012, Cabinet Office, Government of Japan, 2013.
Article Details
Abstract views: 403
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
