SMART POWER WHEELCHAIR: PROBLEMS AND CHALLENGES OF PRODUCT APPROACH

Serge Ageyev


Mobilis Robotics LLC, Kraków, Poland (Poland)
http://orcid.org/0000-0002-9451-6766

Andrii Yarovyi

a.yarovyy@vntu.edu.ua
1Mobilis Robotics LLC, Kraków, Poland, 2Vinnytsia National Technical University, Department for Computer Science, Vinnytsia, Ukraine (Ukraine)
http://orcid.org/0000-0002-6668-2425

Abstract

This paper focuses on intelligent assistant for power wheelchair (PW) usage in home conditions. Especially in the context of PW intelligent assistant as a consumer product. The main problematic aspects and challenges of smart PW in real application are noted. The approach to formation of system requirements and their classification is offered. The research results proposed and implemented in the ongoing Mobilis project for smart PW. Further prospects of research and development are noted. Also, it is stated that the implementation of smart PW technology opens possibilities to effective integration with new control methods (including brain-computer interfaces).


Keywords:

power wheelchair, intelligent systems, drive assist systems, autopilot, human computer interaction

Ageyev S.: Product Approach to Autonomous Power Wheelchair. ResearchGate. September 2020 [http://researchgate.net/publication/344045604_Product_Approach_to_Autonomous_Power_Wheelchair].
  Google Scholar

Ageyev S., Yarovyi A.: Intelligent Assist Technology for Power Wheelchair: Problems and Challenges of Product Approach – Brain Controlling Technology for Assistive Devices. Tech Day Online Meeting – DEMACH Event- und Veranstaltungs GmbH, Berlin, 2021.
  Google Scholar

Ageyev S., Yarovyi A.: Intelligent Assistant for Power Wheelchair. L Scientific and Technical Conference of Vinnytsia National Technical University 2021, [https://conferences.vntu.edu.ua/index.php/all-fitki/all-fitki-2021/paper/view/12943/10866].
  Google Scholar

Arledge S., Armstrong W., Babinec M., Dicianno B. E., Digiovine C., Dyson-Hudson T., Stogner J.: RESNA Wheelchair Service Provision Guide. RESNA (NJ1) 2011.
  Google Scholar

Cascado D. et al.: A Smart Electric Wheelchair Using UPnP. In: Cai Y., Abascal J. (eds): Ambient Intelligence in Everyday Life. Lecture Notes in Computer Science 3864. Springer, Berlin, Heidelberg 2006, [https://doi.org/10.1007/11825890_14].
DOI: https://doi.org/10.1007/11825890_14   Google Scholar

Fehr L, Langbein W. E., Skaar S. B.: Adequacy of power wheelchair control interfaces for persons with severe disabilities: a clinical survey. J Rehabil Res Dev. 37(3), 2000, 353-60 [https://www.ncbi.nlm.nih.gov/pubmed/10917267].
  Google Scholar

Ghorbel M., Pineau J., Gourdeau R. et al.: A Decision-Theoretic Approach for the Collaborative Control of a Smart Wheelchair. Int. J. of Soc. Robotics 10, 2018, 131–145 [https://doi.org/10.1007/s12369-017-0434-7].
DOI: https://doi.org/10.1007/s12369-017-0434-7   Google Scholar

Hartman A., Nandikolla V. K.: Human-Machine Interface for a Smart Wheelchair. Journal of Robotics 2019 [https://doi.org/10.1155/2019/4837058].
DOI: https://doi.org/10.1155/2019/4837058   Google Scholar

Joshi M. K., Gupta M. V., Gosavi M. M., Wagh M. S.: A multifunctional smart wheelchair. Int. J. Adv. Res. Electron. Commun. Eng. 4(5), 2015, 1281–1284.
  Google Scholar

Karmarkar A. M., Dicianno B. E., Graham J. E., Cooper R., Kelleher A., Cooper R. A.: Factors associated with provision of wheelchairs in older adults. Assistive Technology 24(3), 2012, 155–167.
DOI: https://doi.org/10.1080/10400435.2012.659795   Google Scholar

Leaman J., La H. M.: A Comprehensive Review of Smart Wheelchairs: Past, Present, and Future. IEEE Transactions on Human-Machine Systems 47(4), 2017, 486–499 [http://doi.org/10.1109/THMS.2017.2706727].
DOI: https://doi.org/10.1109/THMS.2017.2706727   Google Scholar

Madokoro H., Shirai K., Sato K., Shimoi N.: Basic Design of Visual Saliency Based Autopilot System Used for Omnidirectional Mobile Electric Wheelchair. Computer Science and Information Technology 3(5), 2015, 171–186 [http://doi.org/10.13189/csit.2015.030503].
DOI: https://doi.org/10.13189/csit.2015.030503   Google Scholar

Mobilis Electric Wheelchair Autopilot [http://mobilis.io] (available: 16.08.2021).
  Google Scholar

Sanders D. et al.: Intelligent Control and HCI for a Powered Wheelchair Using a Simple Expert System and Ultrasonic Sensors. In: Arai K., Kapoor S., Bhatia R. (eds): Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing 1252. Springer, Cham. [https://doi.org/10.1007/978-3-030-55190-2_42].
DOI: https://doi.org/10.1007/978-3-030-55190-2_42   Google Scholar

Sanders D., Okono O., Langner M., Hassan M., Khaustov S., Omoarebun P.: Using a Simple Expert System to Assist a Powered Wheelchair User. In: Bi Y., Bhatia R., Kapoor S. (eds): Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing 1037. Springer, Cham. [https://doi.org/10.1007/978-3-030-29516-5_50].
DOI: https://doi.org/10.1007/978-3-030-29516-5_50   Google Scholar

Simpson R. C.: Smart wheelchairs: A literature review. Journal of Rehabilitation Research and Development 42(4), 2005, 423–436.
DOI: https://doi.org/10.1682/JRRD.2004.08.0101   Google Scholar

Simpson R. C., LoPresti E. F., Cooper R. A.: How many people would benefit from a smart wheelchair? Journal of Rehabilitation Research and Development 45(1), 2008, 53–72.
DOI: https://doi.org/10.1682/JRRD.2007.01.0015   Google Scholar

Simpson R., LoPresti E., Hayashi S., Nourbakhsh I.: The Smart Wheelchair Component System. Journal of Rehabilitation Research & Development 41(3B), 2004, 429–442 [https://www.rehab.research.va.gov/jour/04/41/3b/simpson.html]
DOI: https://doi.org/10.1682/JRRD.2003.03.0032   Google Scholar

Sonenblum S. E., Sprigle S., Harris F. H., Maurer C. L.: Characterization of Power Wheelchair Use in the Home and Community 2008 [https://smartech.gatech.edu/bitstream/handle/1853/36721/Sonenblum_etal_CharacterizationofPowerWCUse_ArchivesPhysMed&Rehab2008_SmartTechversion.pdf]
DOI: https://doi.org/10.1016/j.apmr.2007.09.029   Google Scholar

Sturnieks D. L., George R. St, Lord S. R.: Balance disorders in the elderly, Neurophysiologie Clinique/Clinical Neurophysiology 38(6), 2008, 467–478 [https://doi.org/10.1016/j.neucli.2008.09.001].
DOI: https://doi.org/10.1016/j.neucli.2008.09.001   Google Scholar

Viswanathan P. et al.: Smart Wheelchairs in Assessment and Training (SWAT): State of the Field 2018 [https://agewell-nce.ca/publications/position-papers].
DOI: https://doi.org/10.4324/9781315368788-5   Google Scholar

Viswanathan P., Zambalde E. P., Foley G. et al.: Intelligent wheelchair control strategies for older adults with cognitive impairment: user attitudes, needs, and preferences. Autonomous Robots 41, 2017, 539–554 [https://doi.org/10.1007/s10514-016-9568-y].
DOI: https://doi.org/10.1007/s10514-016-9568-y   Google Scholar

White Paper on Aging Society 2012, Cabinet Office, Government of Japan, 2013.
  Google Scholar

Download


Published
2021-09-30

Cited by

Ageyev, S., & Yarovyi, A. (2021). SMART POWER WHEELCHAIR: PROBLEMS AND CHALLENGES OF PRODUCT APPROACH. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 11(3), 9–13. https://doi.org/10.35784/iapgos.2716

Authors

Serge Ageyev 

Mobilis Robotics LLC, Kraków, Poland Poland
http://orcid.org/0000-0002-9451-6766

Authors

Andrii Yarovyi 
a.yarovyy@vntu.edu.ua
1Mobilis Robotics LLC, Kraków, Poland, 2Vinnytsia National Technical University, Department for Computer Science, Vinnytsia, Ukraine Ukraine
http://orcid.org/0000-0002-6668-2425

Statistics

Abstract views: 272
PDF downloads: 458