A comparative analysis of the current state and development of spectral ellipsometry (SE) is carried out, the main limitations typical of popular configurations of measuring devices are determined. An original technical solution is proposed that allows one to create a two-source SE that implements the ellipsometry method with switching orthogonal polarization states. The measuring setup provides high precision of measurements of ellipsometric parameters Ψ and Δ in the spectral range of 270–2200 nm and the speed determined by the characteristics of pulsed sources with a simple ellipsometer design. As objects for experimental researches, confirming the efficiency and high precision qualities of the fabricated SE, we used a GaAs/ZnS-quarter-wave device for a CO2 laser and SiO2 on Si calibration plates. The optical properties of Bi2Te3-xSex films were investigated in the range of 270–1000 nm using a multi-angle SE. It was shown that the optical properties of Bi2Te3-xSex films monotonically change depending on the ratio of selenium and tellurium.


thin films; optical properties; spectroscopy; Fourier transform; ellipsometry and polarimetry; optics on surfaces; instrumentation; measurements and metrology

Acher O., Bigan E., Drévillon B.: Improvements of phase-modulated ellipsometry. Rev. Sci. Instrum. 60, 1989 [http://doi.org/10.1063/1.1140580]. DOI: https://doi.org/10.1063/1.1140580

Alonso M. I., Garriga M.: Optical properties of semiconductors. Springer International Publishing Vol. 212, 2018. DOI: https://doi.org/10.1007/978-3-319-75377-5_4

Aspnes D. E.: Spectroscopic ellipsometry — Past, present, and future. Thin Solid Films 571, 2014, 334–344 [http://doi.org/10.1016/j.tsf.2014.03.056]. DOI: https://doi.org/10.1016/j.tsf.2014.03.056

Azzam R. M. A.: Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal. Opt. Lett. 2, 1978, [http://doi.org/10.1364/ol.2.000148]. DOI: https://doi.org/10.1364/OL.2.000148

Collins R. W., Koh J.: Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films. Journal of the Optical Society of America A 16, 1999, 1997 [http://doi.org/10.1364/JOSAA.16.001997]. DOI: https://doi.org/10.1364/JOSAA.16.001997

Fujiwara H.: Spectroscopic Ellipsometry: Principles and Applications. John Wiley and Sons, 2007. DOI: https://doi.org/10.1002/9780470060193

Furchner A., Walder C., Zellmeier M., Rappich J., Hinrichs K.: Broadband infrared Mueller-matrix ellipsometry for studies of structured surfaces and thin films. Appl. Opt. 57, 2018, 7895 [http://doi.org/10.1364/AO.57.007895]. DOI: https://doi.org/10.1364/AO.57.007895

Garcia-Caurel E., de Martino A., Drévillon B.: Spectroscopic Mueller polarimeter based on liquid crystal devices. Thin Solid Films 455–456, 2004, 120–123 [http://doi.org/10.1016/j.tsf.2003.12.056]. DOI: https://doi.org/10.1016/j.tsf.2003.12.056

Garcia-Caurel E., de Martino A., Gaston J.-P., Yan L.: Application of Spectroscopic Ellipsometry and Mueller Ellipsometry to Optical Characterization. Applied Spectroscopy 67, 2013, 1–21 [http://doi.org/10.1366/12-06883]. DOI: https://doi.org/10.1366/12-06883

Hinrichs K., Eichhorn K. J., Ertl G., Mills D. L., Lüth H.: Ellipsometry of Functional Organic Surfaces and Films. Springer Series in Surface Sciences Vol. 52, Berlin, Heidelberg, 2014. DOI: https://doi.org/10.1007/978-3-642-40128-2

Kovalev V. I., Rukovishnikov A. I., Kovalev S. V., Kovalev V. V., Rossukanyi N. M.: An achromatic four-mirror compensator for spectral ellipsometers. Opt. Spectrosc. 123, 2017 [http://doi.org/10.1134/S0030400X1707013X]. DOI: https://doi.org/10.1134/S0030400X1707013X

Kovalev V. I., Rukovishnikov A. I., Kovalev S. V., Kovalev V. V.: An LED multichannel spectral ellipsometer with binary modulation of the polarization state. Instruments and Experimental Techniques 57, 2014 [http://doi.org/10.1134/S002044121405008X]. DOI: https://doi.org/10.1134/S002044121405008X

Kovalev V. I., Rukovishnikov A. I., Kovalev S. V., Kovalev V. V.: LED broadband spectral ellipsometer with switching of orthogonal polarization states. J. Opt. Technol. 2016, 83, 181 [http://doi.org/10.1364/JOT.83.000181. DOI: https://doi.org/10.1364/JOT.83.000181

Kovalev V. V., Kuznetsov P. I., Yakushcheva G. G., Yapaskurt O. V., Kovalev V. I., Rukovishnikov A. I., Kovalev S. V.: MOVPE deposition and optical properties of thin films of a Bi2Te3-xSex topological insulator. J. Phys. Conf. Ser. 1199, 2019, 012038 [http://doi.org/10.1088/1742-6596/1199/1/012038]. DOI: https://doi.org/10.1088/1742-6596/1199/1/012038

Kovalev, V.I., Rukovishnikov, A.I., Rossukanyi, N.M., Kovalev, S. V., Kovalev, V. V., Amelichev, V. V., Kostyuk, D. V., Vasil’ev, D. V., Orlov, E. P. LED magneto-optical ellipsometer with the switching of orthogonal polarization states. Instruments and Experimental Techniques 59, 2016, 707–711 [http://doi.org/10.1134/S0020441216040084]. DOI: https://doi.org/10.1134/S0020441216040084

Kroning A., Furchner A., Aulich D., Bittrich E., Rauch S., Uhlmann P., Eichhorn K. J., Seeber M., Luzinov I., Kilbey S. M., et al.: In Situ Infrared Ellipsometry for Protein Adsorption Studies on Ultrathin Smart Polymer Brushes in Aqueous Environment. ACS Appl. Mater. Interfaces 7, 2015, 12430–12439 [http://doi.org/10.1021/am5075997]. DOI: https://doi.org/10.1021/am5075997

Li K., Wang S., Wang L., Yu H., Jing N., Xue R., Wang Z.: Fast and Sensitive Ellipsometry-Based Biosensing. Sensors 18, 2017, 15 [http://doi.org/10.3390/s18010015]. DOI: https://doi.org/10.3390/s18010015

Losurdo M., Bergmair M., Bruno G., Cattelan D., Cobet C., de Martino A., Fleischer K., Dohcevic-Mitrovic Z., Esser N., Galliet M., et al.: Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: State-of-the-art, potential, and perspectives. J. Nanoparticle 11, 2009, 1521–1554 [http://doi.org/10.1007/s11051-009-9662-6]. DOI: https://doi.org/10.1007/s11051-009-9662-6

de Martino A., Kim Y.-K., Garcia-Caurel E., Laude B., Drévillon B.: Optimized Mueller polarimeter with liquid crystals. Opt. Lett. 28, 2003, 616 [http://doi.org/10.1364/OL.28.000616]. DOI: https://doi.org/10.1364/OL.28.000616

Schmidtling T., Pohl U. W., Richter W., Peters S.: In situ spectroscopic ellipsometry study of GaN nucleation layer growth and annealing on sapphire in metal-organic vapor-phase epitaxy. J. Appl. Phys. 98, 2005, [http://doi.org/10.1063/1.1999033]. DOI: https://doi.org/10.1063/1.1999033

Tompkins H. G., Irene E. A.: Handbook of Ellipsometry. William Andrew Publishing, 2005. DOI: https://doi.org/10.1007/3-540-27488-X

Yim C., O’Brien M., McEvoy N., Winters S., Mirza I., Lunney J. G., Duesberg G. S.: Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry. Applied Physics Letters 104, 2014 [http://doi.org/10.1063/1.4868108]. DOI: https://doi.org/10.1063/1.4868108


Published : 2021-12-20

Kovalev, V., Uvaysov, S., & Bogucki, M. (2021). ELLIPSOMETRY BASED SPECTROSCOPIC COMPLEX FOR RAPID ASSESSMENT OF THE Bi2Te3-xSex THIN FILMS COMPOSITION. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 11(4), 67-74. https://doi.org/10.35784/iapgos.2855

Vladimir Kovalev  vladimirkovalev.inc@gmail.com
MOCVD Semiconductor Growth Laboratory, Kotelnikov Institute of Radio-Engineering and Electronics of RAS  Russian Federation
Saygid Uvaysov 
MIREA – Russian Technological University  Russian Federation
Marcin Bogucki 
Lublin University of Technology, Faculty of Mechanical Engineering, Department of Automation  Poland