NEURAL NETWORKS FROM KERAS IN SKIN LESION DIAGNOSTIC
Magdalena Michalska-Ciekańska
magdalena.michalska@pollub.edu.plLublin University of Technology, Department of Electronics and Information Technology (Poland)
http://orcid.org/0000-0002-0874-3285
Abstract
Abstract. Melanoma is currently one of the most dangerous skin diseases, in addition many others appear in the population. Scientists are developing techniques for early non-invasive skin lesions diagnosis from dermatoscopic images, for this purpose neural networks are increasingly used. Many tools are being developed to allow for faster implementation of the network, including the Keras package. . The article presents selected methods of diagnosing skin diseases, including the process of classification, features selection, extracting the skin lesion from the whole image.The described methods have been implemented using deep neural networks available in the Keras package. The article draws attention to the effectiveness, specificity, accuracy of classification based on available data sets, attention was paid to tools that allow for more effective operation of algorithms.
Keywords:
dermatoscopic images, deep learning, melanoma, skin lesions, KerasReferences
Adegun A., Viriri S.: Deep learning-based system for automatic melanoma detection. IEEE Access 8, 2020, 7160–7172.
DOI: https://doi.org/10.1109/ACCESS.2019.2962812
Google Scholar
Aggarwal A., Kumar M.: Image surface texture analysis and classification using deep learning, Multimedia Tools and Applications 80, 2021, 1289–1309.
DOI: https://doi.org/10.1007/s11042-020-09520-2
Google Scholar
Almeida M., Santos I.: Classification models for skin tumor detection using texture analysis in medical images, J. Imaging 6(51), 2020, [http://doi.org/10.3390/jimaging6060051].
DOI: https://doi.org/10.3390/jimaging6060051
Google Scholar
Attia M., Hossny M., Nahavandi S., Yazdabadi A.: Skin melanoma segmentation using recurrent and convolutional neural networks. Biomedical Imaging (ISBI 2017), IEEE 14th International Symposium, 2017, 292–296.
DOI: https://doi.org/10.1109/ISBI.2017.7950522
Google Scholar
Barata C., Celebi M., Marques J.: A survey of feature extraction in dermoscopy image analysis of skin cancer. IEEE Journal of Biomedical and Health Informatics 23(3), 2019, 1096–1109.
DOI: https://doi.org/10.1109/JBHI.2018.2845939
Google Scholar
Brinker T. J., Hekler A., Enk A. H., Klode J., Hauschild A., Berking C.: Deep learning outperformed 136 of 157 dermatologists in a head-to-head der moscopic melanoma image classification task. Eur J Cancer 113, 2019, 47–54.
Google Scholar
Brownlee J.: Gentle introduction to the adam optimization algorithm for deep learning. Machine Learning Mastery Pty. Ltd., 2019, https://machinelearningmastery.com/adamoptimization-algorithm-for-deep-learning/ss
Google Scholar
Codella N., Cai J., Abedini M., Garnavi R., Halpern A., Smith J. R.: Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images. International Workshop on Machine Learning in Medical Imaging, 2015, 118–126.
DOI: https://doi.org/10.1007/978-3-319-24888-2_15
Google Scholar
Codella N., Nguyen Q., Pankanti S., Gutman D., Helba B., Halpern A., Smith J.: Deep learning ensembles for melanoma recognition in dermoscopy images. arXiv preprint arXiv:1610.04662, 2016.
Google Scholar
Esteva A.: Dermatologist-level classification of skin cancer with deep neural networks. Nat. Res. 542(7639), 2017, 115–118.
DOI: https://doi.org/10.1038/nature21056
Google Scholar
Ge Y., Li B., Zhao Y., Guan E., Yan W.: Melanoma seg-mentation and classification in clinical images using deep learning, ICMLC 2018: Proceedings of the 2018 10th International Conference on Machine Learning and Computing, 2018, 252–256.
DOI: https://doi.org/10.1145/3195106.3195164
Google Scholar
Ge Z., Demyanov S., Chakravorty R., Bowling A., Garnavi R.: Skin disease recognition using deep saliency features and multimodal learning of dermoscopy and clinical images. Descoteaux M., Maier-Hein L., Franz A., Jannin P., Collins D. L., Duchesne S. (eds.), Springer, Cham LNCS 10435, 250–258, 2017.
DOI: https://doi.org/10.1007/978-3-319-66179-7_29
Google Scholar
Gupta A., Thakur S., Rana A.: Study of Melanoma Detection and Classification Techniques. 8th International Conference on Reliability, Infocom Technologies and Optimization, 2020 1345–1350, [http://doi.org/10.1109/ICRITO48877.2020.9197820].
DOI: https://doi.org/10.1109/ICRITO48877.2020.9197820
Google Scholar
Haenssle H. A., Fink C., Schneiderbauer R., Toberer F., Buhl T., Blum A.: Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol 29, 2018, 1836–1342.
Google Scholar
Hekler A., Utikal J. S., Enk A. H., Solass W., Schmitt M., Klode J.: Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. Eur J Cancer 118, 2019, 91–96.
DOI: https://doi.org/10.1016/j.ejca.2019.06.012
Google Scholar
Hijazi S., Kumar R., Rowen C.: Using convolutional neural networks for image recognition. Cadence Design Systems Inc., San Jose 2015.
Google Scholar
Katapadi A. B.: Evolving strategies for the development and evaluation of a computerised melanoma image analysis system. Comput.Methods Biomech. Biomed. Eng., Imag Visual. 6, 2018, 465–472.
DOI: https://doi.org/10.1080/21681163.2016.1277785
Google Scholar
Li Y., Shen L.: Skin Lesion Analysis towards Melanoma Detec-tion Using Deep Learning Network. arXiv.org > cs > arXiv:1703.00577, Computer Vision and Pattern Recognition 2017 (v2).
DOI: https://doi.org/10.3390/s18020556
Google Scholar
Lopez A. R., Giro-i-Nieto X., Burdick J., Marques O.: Skin lesion classification from dermatoscopic images using deep learning techniques, [http://doi.org/JO.23J6/P.20l7.852-053].
Google Scholar
Lopez A. R.: Skin lesion classification from dermoscopic images using deep learning techniques. Proc. 13th IASTED Int. Conf. Biomed. Eng. 2017, 49–54.
Google Scholar
Majumder S., Ahsan Ullah M.: Feature extraction from der-moscopy images for an effective diagnosis of melanoma skin cancer. 10th International Conference on Electrical and Compu-ter Engineering Bangladesh, 2018, 185–188.
DOI: https://doi.org/10.1109/ICECE.2018.8636712
Google Scholar
Marchetti M. A., Codella N. C., Dusza S. W., Gutman D. A., Helba B., Kalloo A.: Results of the 2016 international skin imaging collaboration international symposium on biomedical imaging challenge: comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. J Am Acad Dermatol 78, 2018, 270–277.
DOI: https://doi.org/10.1016/j.jaad.2017.08.016
Google Scholar
Marchetti M. A., Liopyris K., Dusza S. W., Codella N. C. F., Gutman D. A., Helba B.: Computer algorithms show potential for improving dermatologists’ accuracy to diagnose cutaneous melanoma: results of the international skin imaging collaboration 2017. J Am Acad Dermatol 82, 2020, 622–627.
DOI: https://doi.org/10.1016/j.jaad.2019.07.016
Google Scholar
Maron R. C., Weichenthal M., Utikal J. S., Hekler A., Berking C., Hauschild A.: Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks. Eur J Cancer 119, 2019, 57–65.
Google Scholar
Mendoza C. S., Serrano C., Acha B.: Scale invariant descriptors inpattern analysis of melanocytic lesions. Proc. IEEE 16th Int. Conf. Image Process., 2009, 4193–4196.
DOI: https://doi.org/10.1109/ICIP.2009.5414525
Google Scholar
Murphree D. H., Puri P., Shamim H., Bezalel S. A., Drage L. A., Wang M., Pittelkow M. R., Carter R. E., Davis M., Bridges A., Mangold A., Yiannias J., Tollefson M., Lehman J., Meves A., Otley C., Sokumbi O., Hall M., Comfere N.: Deep learning for dermatologists: Part I. J Am Acad Dermatol, 1–9, 2020.
DOI: https://doi.org/10.1016/j.jaad.2020.05.056
Google Scholar
Nachbar F., Stolz W., Merkle T., Cognetta A., Vogt T., Landthaler M.: The abcd rule of dermatoscopy. High prospective value in the diagnosis of doubtful melanocytic skin lesions. Journal of the American Academy of Dermatology 30(4), 1994, 551–559.
DOI: https://doi.org/10.1016/S0190-9622(94)70061-3
Google Scholar
Nida N., Irtaza A., Javed A., Yousaf M., Mahmood M.: Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy C-means clustering. International Journal of Medical Informatics 124, 2019, 37–48.
DOI: https://doi.org/10.1016/j.ijmedinf.2019.01.005
Google Scholar
Panja A., Jackson J. Ch., Quadir Md. A.: An Approach to Skin Cancer Detection Using Keras and Tensorflow. Journal of Physics: Conference Series 1911 012032, 2021, [http://doi.org/10.1088/1742-6596/1911/1/012032].
DOI: https://doi.org/10.1088/1742-6596/1911/1/012032
Google Scholar
Rahi M., Khan F., Mahtab M., Amanat Ullah A., Alam M. G., Alam M.: Detection Of Skin Cancer Using Deep Neural Networks, IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), 2019, 1–7, [http://doi.org/10.1109/CSDE48274.2019.9162400].
DOI: https://doi.org/10.1109/CSDE48274.2019.9162400
Google Scholar
Romero Lopez A., Xiro-i-Nieto X., Burdick J., Marques O.: Skin lesion classification from dermoscopic images using deep learning techniques. 13th IASTED International Conference on Biomedical Engineering (BioMed), 49–54, 2017, [http://doi.org/10.2316/P.2017.852-053]
DOI: https://doi.org/10.2316/P.2017.852-053
Google Scholar
Sherif F., Mohamed W. A., Mohra A. S.: Skin lesion analysis toward melanoma detection using deep learning techniques. INTL Journal of Electronics and Telecommunications 65(4), 2019, 597–602.
Google Scholar
Villa-Pulgarin J., Ruales-Torres A., Arias-Garzón D., Bravo-Ortiz M., Arteaga-Arteaga H., Mora-Rubio A., Alzate-Grisales J., Mercado-Ruiz E., Hassaballah M., Orozco-Arias S., Cardona-Morales O., Tabares-Soto R.: Optimized Convolutional Neural Network Models for Skin Lesion Classification. Computers, Materials & Continua Tech Science Press, CMC 70(2), 2022, [http://doi.org/10.32604/cmc.2022.019529].
DOI: https://doi.org/10.32604/cmc.2022.019529
Google Scholar
Wang Y., Cai J., Louie D., Wang J., Lee T.: Incorporating clinical knowledge with constrained classifier chain into a multimodal deep network for melanoma detection. Computers in Biology and Medicine 137, 2021, 104812.
DOI: https://doi.org/10.1016/j.compbiomed.2021.104812
Google Scholar
Young A. T., Xiong M., Pfau J., Keiser M. J, Wei M.L.: Artificial intelligence in dermatology: A Primer. Journal of Investigative Dermatology 140, 2020, 1504–1512.
DOI: https://doi.org/10.1016/j.jid.2020.02.026
Google Scholar
Yu L., Chen H., Dou Q., Qin J., Heng P. A.: Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 36(4), 2017, 994–1004.
DOI: https://doi.org/10.1109/TMI.2016.2642839
Google Scholar
Zhang J., Xie Y., Wu Q., Xia Y.: Skin lesion classification in dermoscopy images using synergic deep learning, Springer Nature Switzerland. LNCS 11071, 2018, 12–20.
DOI: https://doi.org/10.1007/978-3-030-00934-2_2
Google Scholar
Authors
Magdalena Michalska-Ciekańskamagdalena.michalska@pollub.edu.pl
Lublin University of Technology, Department of Electronics and Information Technology Poland
http://orcid.org/0000-0002-0874-3285
Statistics
Abstract views: 248PDF downloads: 184
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Magdalena Michalska-Ciekańska, DEEP NEURAL NETWORKS FOR SKIN LESIONS DIAGNOSTICS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 3 (2022)