USING BAYESIAN METHODS IN THE TASK OF MODELING THE PATIENTS' PHARMACORESISTANCE DEVELOPMENT
Article Sidebar
Open full text
Issue Vol. 12 No. 2 (2022)
-
CKRIPT: A NEW SCRIPTING LANGUAGE FOR WEB APPLICATIONS
Wiktor Kania, Radoslaw Wajman4-9
-
MULTICLASS SKIN LESS IONS CLASSIFICATION BASED ON DEEP NEURAL NETWORKS
Magdalena Michalska10-14
-
THE SYNTHESIS OF MATHEMATICAL MODELS OF NONLINEAR DYNAMIC SYSTEMS USING VOLTERRA INTEGRAL EQUATION
Borys Mokin, Vitalii Mokin, Oleksandr Mokin, Orken Mamyrbaev, Saule Smailova15-19
-
THE SPECTRUM LENGTH METHOD IN QUANTITATIVE INTERPRETATION OF SELECTED OPTICAL SPECTRA
Martyna Wawrzyk20-23
-
DEVELOPMENT OF AUTOMATION OF WASTE SORTING AS AN INTEGRAL PART OF ENVIRONMENTAL PROTECTION
Nataliia Stelmakh, Oleg Belman24-29
-
METHOD FOR EVALUATION QUALITY PARAMETERS OF TELECOMMUNICATIONS SERVICES
Valentyn Zablotskyi, Yosyp Selepyna, Viktor Lyshuk, Natalia Yakymchuk, Anatolii Tkachuk30-33
-
NEW METHOD OF ON-LINE SUCCESSIVE-APPROXIMATION ADC CALIBRATION
Serhii Zakharchenko, Tetiana Korobeinikova, Aigul Tungatarova, Bakhyt Yeraliyeva34-37
-
DESIGN OF INNOVATIVE MEASUREMENT SYSTEMS IN ULTRASONIC TOMOGRAPHY
Michał Gołąbek, Tomasz Rymarczyk38-42
-
MATHEMATICAL SIMULATION OF A MICROELECTRONIC TRANSDUCER WITH FREQUENCY OUTPUT FOR MEASURING THE INDUCTION OF THE MAGNETIC FIELD
Alexander Osadchuk, Iaroslav Osadchuk, Volodymyr Martyniuk, Lyudmila Krylik, Maria Evseeva43-49
-
STUDY OF THE ELECTROMAGNETIC IMPACT OF THE OVERHEAD TRANSMISSION LINES OF 330 KV ON ECOLOGICAL SYSTEMS
Veronika Cherkashina, Svitlana Litvinchuk, Vladyslav Lesko, Svetlana Kravets, Volodymyr Netrebskiy, Olena Sikorska, Orken Mamyrbayev, Baglan Imanbek50-55
-
DETERMINATION OF THE OPTIMAL FREQUENCY OF THE PRIMARY MEASURING TRANSDUCER OF THE THICKNESS OF DIELECTRIC COATINGS OF METAL SURFACES
Kostyantyn Ovchynnykov, Oleksandr Vasilevskyi, Volodymyr Sevastianov, Yurii Polievoda, Aliya Kalizhanova, Bakhyt Yeraliyeva56-59
-
DYNAMICS OF THE CONVEYOR SPEED STABILIZATION SYSTEM AT VARIABLE LOADS
Leonid Polishchuk, Oleh Khmara , Oleh Piontkevych, Oksana Adler, Aigul Tungatarova , Ainur Kozbakova60-63
-
ON PRECISION ACOUSTIC WAVE CALCULATION IN A FREQUENCY DOMAIN
Tomasz Rymarczyk, Jan Sikora64-68
-
METHODS FOR DETECTING AND SELECTING AREAS ON TEXTURE BIOMEDICAL IMAGES OF BREAST CANCER
Ainur Orazayeva , Jamalbek Tussupov, Waldemar Wójcik, Sergii Pavlov, Gulzira Abdikerimova, Liudmyla Savytska69-72
-
NUMERICAL SIMULATIONS OF A FLAT PHANTOM IN THE NEAR-FIELD OF SYMMETRIC DIPOLE ANTENNA
Monika Styła, Sebastian Styła73-76
-
USING BAYESIAN METHODS IN THE TASK OF MODELING THE PATIENTS' PHARMACORESISTANCE DEVELOPMENT
Mariia A. Voronenko, Ulzhalgas M. Zhunissova, Saule S. Smailova, Luidmila N. Lytvynenko, Nataliia B. Savina, Pavlo P. Mulesa, Volodymyr I. Lytvynenko77-82
Archives
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
Main Article Content
DOI
Authors
Abstract
In this paper, we propose a methodology for using static Bayesian networks (BN) in modeling the development of pharmacoresistance in patients with a diagnosis of epilepsy. Methods for constructing the structure of a static BN, their parametric training, validation, sensitivity analysis and “What-if” scenario analysis are considered. The model was designed in collaboration with expert doctors, as well as expert pharmacologists in the selection and quantification of input and output variables.
Keywords:
References
Bates D. W., Kuperman G. J., Wang S., Gandhi T., Kittler A.: Ten commandments for effective clinical decision support: Making the practice of evidence-based medicine a reality. Journal of the American Medical Informatics Association 10, 2003, 523–530. DOI: https://doi.org/10.1197/jamia.M1370
Castillo E. F., Guti´errez J. M., Hadi A. S.: Sensitivity analysis in discrete Bayesian networks. IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans 27(4), 1997, 412–423. DOI: https://doi.org/10.1109/3468.594909
Cheeseman P., Kelly M., Taylor W., Freema D., Stutz J.: Bayesian classification. Proceedings of AAAI, St. Paul 1988, 607–611.
Cooper G. F.: Current research directions in the development of expert systems based on belief networks. Applied Stochastic Models and Data Analysis 5, 1989, 39–52. DOI: https://doi.org/10.1002/asm.3150050106
Darwiche A.: A differential approach to inference in Bayesian networks. Proceedings of Uncertainty in Artificial Intelligence 2000, 123–132.
Hiritis N.: Predictors of pharmacoresistant epilepsy. Epilepsy research 75(2-3), 2007, 192–196. DOI: https://doi.org/10.1016/j.eplepsyres.2007.06.003
Kahane Ph., Berg A., Loscher W.: Current knowledge on basic mechanism of drug resistance. Drug resistant epilepsy, UK John Libbey Eurotext, 2008, 47–57.
Kawamoto K., Houlihan C. A., Balas E. A., Lobach D. F.: Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. British Medical Journa 330, 2005, 765–773. DOI: https://doi.org/10.1136/bmj.38398.500764.8F
Kipersztok O., Wang H.: Another look at sensitivity of Bayesian networks to imprecise probabilities. Proceedings of the Eighth International Workshop on Artificial Intelligence and Statistics 2001, 226–232.
Kjærulff U., van der Gaag L. C.: Making sensitivity analysis computationally efficient. Proceedings of Uncertainty in Artificial Intelligence 2000, 317–325.
Kwan P., Arzimanoglou A., Berg A. T., Brodie M. J.: Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 51(6), 2010, 1069–1077. DOI: https://doi.org/10.1111/j.1528-1167.2009.02397.x
Lucas P. J. F., Boot H., Taal B. G.: Decision-theoretic network approach to treatment management and prognosis. Knowledge-based Systems 11, 1998, 321–330. DOI: https://doi.org/10.1016/S0950-7051(98)00060-4
Miller R.: Medical diagnostic decision support systems-past, present and future. Journal of the American Medical Informatics Association 1, 1994, 8–27. DOI: https://doi.org/10.1136/jamia.1994.95236141
Musen M. A., Shahar Y., Shortliffe E. H.: Biomedial Informatics: computer applications in health care and biomedicine. Springer, New York 2006, 698–736. DOI: https://doi.org/10.1007/0-387-36278-9_20
Osheroff J. A.: Improving medication use and outcomes with clinical decision support: a step-by-step guide. Healthcare Information and Management Systems Society, Chicago 2009.
Percell G. P.: What makes a good clinical decision support system. British Medical Journal 330, 2005, 740–741. DOI: https://doi.org/10.1136/bmj.330.7494.740
Article Details
Abstract views: 339
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
