DEEP NEURAL NETWORKS FOR SKIN LESIONS DIAGNOSTICS
Article Sidebar
Open full text
Issue Vol. 12 No. 3 (2022)
-
ABSORPTION CHARACTERISTICS OF THERMAL RADIATION FOR CARBON DIOXIDE
Jan Kubicki, Krzysztof Kopczyński, Jarosław Młyńczak4-7
-
SWITCH-FILTER ON A RECTANGULAR WAVEGUIDE PARTIALLY FILLED BY DIELECTRIC
Vitaly Pochernyaev, Nataliia Syvkova, Mariia Mahomedova8-11
-
GIANT MAGNETORESISTANCE OBSERVED IN THIN FILM NiFe/Cu/NiFe STRUCTURES
Jakub Kisała, Andrzej Kociubiński, Karolina Czarnacka, Mateusz Gęca12-15
-
EXPANSION OF THE ZONE OF PRACTICAL APPLICATION OF PLC WITH PARALLEL ARCHITECTURE
Sergiy Tymchuk, Oleksiy Piskarev, Oleksandr Miroshnyk, Serhii Halko, Taras Shchur16-19
-
FEATURES OF THE ANGULAR SPEED DYNAMIC MEASUREMENTS WITH THE USE OF AN ENCODER
Vasyl Kukharchuk, Waldemar Wójcik, Sergii Pavlov, Samoil Katsyv, Volodymyr Holodiuk, Oleksandr Reyda, Ainur Kozbakova, Gaukhar Borankulova20-26
-
APPLICATION OF PREDICTIVE MAINTENANCE IN THE PACKAGING PRODUCTION
Bogdan Palchevskyi, Lyubov Krestyanpol27-33
-
PREDICTION MODEL OF PUBLIC HOUSES’ HEATING SYSTEMS: A COMPARISON OF SUPPORT VECTOR MACHINE METHOD AND RANDOM FOREST METHOD
Andrii Perekrest, Vladimir Chenchevoi, Olga Chencheva, Alexandr Kovalenko, Mykhailo Kushch-Zhyrko, Aliya Kalizhanova, Yedilkhan Amirgaliyev34-39
-
NATURAL-SIMULATION MODEL OF PHOTOVOLTAIC STATION GENERATION IN PROCESS OF ELECTRICITY BALANCING IN ELECTRICAL POWER SYSTEM
Petr Lezhniuk, Viacheslav Komar, Iryna Hunko, Daniyar Jarykbassov, Dinara Tussupzhanova, Bakhyt Yeraliyeva, Nazbek Katayev40-45
-
APPLICATION FOR VIBRATION DIAGNOSTICS
Anzhelika Stakhova46-49
-
DEEP NEURAL NETWORKS FOR SKIN LESIONS DIAGNOSTICS
Magdalena Michalska-Ciekańska50-53
-
DYNAMIC AND MATHEMATICAL MODELS OF THE HYDROIMPULSIVE VIBRO-CUTTING DEVICE WITH A PRESSURE PULSE GENERATOR BULT INTO THE RING SPRING
Roman Obertyukh, Andrіі Slabkyі, Leonid Polishchuk, Oleksandr Povstianoi, Saule Kumargazhanova, Maxatbek Satymbekov54-58
-
EXPERT FUZZY SYSTEMS FOR EVALUATION OF INTENSITY OF REACTIVE EDEMA OF SOFT TISSUES IN PATIENTS WITH DIABETES
Liudmyla Shkilniak, Waldemar Wójcik, Sergii Pavlov, Oleg Vlasenko, Tetiana Kanishyna, Irina Khomyuk, Oleh Bezverkhyi, Sofia Dembitska, Orken Mamyrbayev, Aigul Iskakova59-63
-
SIMULATION OF INFORMATION SECURITY RISKS OF AVAILABILITY OF PROJECT DOCUMENTS BASED ON FUZZY LOGIC
Oleksii M. Shushura, Liudmyla A. Asieieva, Oleksiy L. Nedashkivskiy, Yevhen V. Havrylko, Yevheniia O. Moroz, Saule S. Smailova, Magzhan Sarsembayev64-68
-
MANAGEMENT OF THE WORKPLACES BY THE FACILITIES OF OPERATIONS RESEARCH
Nataliia Geseleva, Ganna Proniuk, Olexander Romanyuk, Olga Akimova, Tetiana Troianovska-Korobeynikova, Liudmyla Savytska, Saule Rakhmetullina, Nurbapa Mekebayev69-73
-
MODELING OF LABOR POTENTIAL OF UKRAINE: FORMATION OF KNOWLEDGE BASE
Ivan V. Zayukov, Iryna M. Kobylianska, Alexandr Kobylianskyi, Sofia V. Dembitska74-78
Archives
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
Main Article Content
DOI
Authors
Abstract
Non-invasive diagnosis of skin cancer is extremely necessary. In recent years, deep neural networks and transfer learning have been very popular in the diagnosis of skin diseases. The article contains selected basics of deep neural networks, their interesting applications created in recent years, allowing the classification of skin lesions from available dermatoscopic images.
Keywords:
References
Abunadi I., Senan E. M.: Deep learning and machine learning techniques of diagnosis dermoscopy images for early detection of skin diseases. Electronics 10, 3158, 2021. DOI: https://doi.org/10.3390/electronics10243158
Al-Masni M. A., Kim D. H., Kim T. S:. Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Comput Methods Programs Biomed. 190, 105351, 2020. DOI: https://doi.org/10.1016/j.cmpb.2020.105351
Brinker T. J. et al: Deep learning outperformed 136 of 157 dermatologists in a head-to-head der moscopic melanoma image classification task. Eur J Cancer 113, 47–54, 2019.
Chaturvedi S. S., Gupta K., Prasad P. S.: Skin lesion analyser: An efficient seven-way multi-class skin cancer classification using MobileNet. Advances in Intelligent Systems and Computing 1141, Springer, Singapore, 2020. DOI: https://doi.org/10.1007/978-981-15-3383-9_15
Codella N. C. F. et al.: Deep learning ensembles for melanoma recognition in dermoscopy images. IBM Journal of Research and Development 61(4/5), 173, 2017. DOI: https://doi.org/10.1147/JRD.2017.2708299
DERMOFIT IMAGE LIBRARY [https://licensing.edinburghinnovations.ed.ac.uk/i/software/dermofit-imagelibrary.html?item=dermofit-image-library] (accessed 04.01.2021).
Gavrilov D., Lazarenko L., Zakirov E.: AI recognition in skin pathologies detection. Proceedings of the 2019 International Conference on Artificial Intelligence: Applications and Innovations (IC-AIAI), 554–542, Belgrade 2019. DOI: https://doi.org/10.1109/IC-AIAI48757.2019.00017
Ge Y. et al.: Melanoma segmentation and classification in clinical images using deep learning. 10th International Conference on Machine Learning and Computing ICMLC, 2018, 252–256. DOI: https://doi.org/10.1145/3195106.3195164
Gessert N. et al.: Skin lesion classification using CNNs with patch-based attention and diagnosis-guided loss weighting. IEEE Trans. Biomed. Eng. 67, 495–503, 2020. DOI: https://doi.org/10.1109/TBME.2019.2915839
Haenssle H. A. et al: Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermato-logists working under less artificial conditions. Ann Oncol 31, 137–143, 2020.
Harangi B.: Skin lesion classification with ensembles of deep convolutional neural networks. J. Biomed. Inform. 86, 25–32, 2018. DOI: https://doi.org/10.1016/j.jbi.2018.08.006
Hasan M. M., Elahi M., Alam M. A.: DermoExpert: Skin lesion classification using a hybrid convolutional neural network through segmentation, transfer learning and augmentation. medRxiv 2021.02.02.21251038. DOI: https://doi.org/10.1101/2021.02.02.21251038
He K. et al.: Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016, 770–778. DOI: https://doi.org/10.1109/CVPR.2016.90
Hekler A. et al.: Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images, Eur J Cancer 118, 91–96, 2019. DOI: https://doi.org/10.1016/j.ejca.2019.06.012
Howard A. G. et al.: MobileNets: Efficient convolutional neural networks for mobile vision applications. Computer Science, Computer Vision and Pattern Recognition, arXiv:1704.04861v1.
Huang G. et al.: Densely Connected Convolutional Networks. Computer Vision and Pattern Recognition arXiv:1608.06993v5.
Iqbal I. et al.: Automated multi-class classification of skin lesions through deep convolutional neural network with dermoscopic images. Computerized Medical Imaging and Graphics 88, 101843, 2021. DOI: https://doi.org/10.1016/j.compmedimag.2020.101843
ISIC Archive [https://www.isic-archive.com/#!/topWithHeader/onlyHeaderTop/gallery] (accessed 23.03.2022).
Kareem O., Mohsin Abdulazeez A., Zeebaree D.: Skin Lesions Classification Using Deep Learning Techniques: Review. Asian Journal of Research in Computer Science 9(1), 1–22, 2021. DOI: https://doi.org/10.9734/ajrcos/2021/v9i130210
Lee S. et al.: Augmented decision-making for acrallentiginous melanoma detection using deep convolutional neural networks. J. Eur. Acad. Dermatol. Venereol. 34, 1842–1850, 2020. DOI: https://doi.org/10.1111/jdv.16185
Lopez A. R. et al.: Skin lesion classification from dermatoscopic images using deep learning techniques. 13th International Conference on Biomedical Engineering (BioMed) IASTED, 2017, 49–54.
Maglogiannis I., Doukas C. N.: Overview of advanced computer vision systems for skin lesions characterization, IEEE transactions on information technology in biomedicine 13(5), 721–733, 2009. DOI: https://doi.org/10.1109/TITB.2009.2017529
Mahbod A. et al.: Fusing finetuned deep features for skin lesion classification, Comput. Med. Imaging Graph. 71, 19–29, 2019. DOI: https://doi.org/10.1016/j.compmedimag.2018.10.007
Mahdianpari M. et al.: Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery. Remote Sens. 10(7), 2018. DOI: https://doi.org/10.3390/rs10071119
Marchetti M. A. et al.: Computer algorithms show potential for improving dermatologists’ accuracy to diagnose cutaneous melanoma: results of the international skin imaging collaboration 2017. J Am Acad Dermatol 82, 622–627, 2020. DOI: https://doi.org/10.1016/j.jaad.2019.07.016
Maron R. C. et al.: Systematic outperformance of 112 dermato-logists in multiclass skin cancer image classification by convo-lutional neural networks, Eur J Cancer 119, 57–65, 2019.
MED-NODE Dataset [http://www.cs.rug.nl/~imaging/databases/melanoma_naevi/] (accessed 23.03.2022). DOI: https://doi.org/10.48189/nl.2022.v03i2.004
Nida N. et al.: Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy C-means clustering, International Journal of Medical Informatics 124, 37–48, 2019. DOI: https://doi.org/10.1016/j.ijmedinf.2019.01.005
PAD-UFES-20 Dataset [https://data.mendeley.com/datasets/zr7vgbcyr2/1] (accessed: 23.03.2022).
PH2 Dataset [https://www.fc.up.pt/addi/ph2%20database.html] (accessed 23.03.2022).
Qin Z. et al.: A GAN-based image synthesis method for skin lesion classification. Computer Methods and Programs in Biomedicine, 105568, 2020. DOI: https://doi.org/10.1016/j.cmpb.2020.105568
Raza R. et al.: Melanoma Classification from dermoscopy images using ensemble of convolutional neural networks. Mathematics 10, 26, 2022. DOI: https://doi.org/10.3390/math10010026
Sandler M. et al.: MobileNetV2: Inverted Residuals and Linear Bottlenecks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, 4510–4520. DOI: https://doi.org/10.1109/CVPR.2018.00474
Simonyan K., Zisserman A.: Very deep convolutional networks for large-scale image recognition. International Conference on Learning Representations ICLR, 2015.
Szegedy C. et al.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. AAAI, 4278–4284, 2017. DOI: https://doi.org/10.1609/aaai.v31i1.11231
Tschandl P. et al.: Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, webbased, international, diagnostic study. Lancet Oncol 2019b(20), 938–947, 2019. DOI: https://doi.org/10.1016/S1470-2045(19)30333-X
Villa-Pulgarin J. et al.: Optimized convolutional neural network models for skin lesion classification, Computers, Materials & Continua Tech Science Press, CMC 70(2), 2022 DOI: https://doi.org/10.32604/cmc.2022.019529
Yu C. et al.: Acral melanoma detection using a convolutional neural network for dermoscopy images. PLoS ONE 2018, 13, e0193321, 2018. DOI: https://doi.org/10.1371/journal.pone.0193321
Zakład Epidemiologii i Prewencji Nowotworów Centrum Onkologii – Instytut w Warszawie. Krajowy Rejestr Nowotworów (KRN) [http://onkologia.org.pl/] (accessed 02.08.2019).
Article Details
Abstract views: 309
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
