DEEP NEURAL NETWORKS FOR SKIN LESIONS DIAGNOSTICS
Magdalena Michalska-Ciekańska
mmagamichalska@gmail.comLublin University of Technology (Poland)
http://orcid.org/0000-0002-0874-3285
Abstract
Non-invasive diagnosis of skin cancer is extremely necessary. In recent years, deep neural networks and transfer learning have been very popular in the diagnosis of skin diseases. The article contains selected basics of deep neural networks, their interesting applications created in recent years, allowing the classification of skin lesions from available dermatoscopic images.
Keywords:
deep neural networks, transfer learning, dermatoscopic images, skin lesions diagnosticsReferences
Abunadi I., Senan E. M.: Deep learning and machine learning techniques of diagnosis dermoscopy images for early detection of skin diseases. Electronics 10, 3158, 2021.
DOI: https://doi.org/10.3390/electronics10243158
Google Scholar
Al-Masni M. A., Kim D. H., Kim T. S:. Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Comput Methods Programs Biomed. 190, 105351, 2020.
DOI: https://doi.org/10.1016/j.cmpb.2020.105351
Google Scholar
Brinker T. J. et al: Deep learning outperformed 136 of 157 dermatologists in a head-to-head der moscopic melanoma image classification task. Eur J Cancer 113, 47–54, 2019.
Google Scholar
Chaturvedi S. S., Gupta K., Prasad P. S.: Skin lesion analyser: An efficient seven-way multi-class skin cancer classification using MobileNet. Advances in Intelligent Systems and Computing 1141, Springer, Singapore, 2020.
DOI: https://doi.org/10.1007/978-981-15-3383-9_15
Google Scholar
Codella N. C. F. et al.: Deep learning ensembles for melanoma recognition in dermoscopy images. IBM Journal of Research and Development 61(4/5), 173, 2017.
DOI: https://doi.org/10.1147/JRD.2017.2708299
Google Scholar
DERMOFIT IMAGE LIBRARY [https://licensing.edinburghinnovations.ed.ac.uk/i/software/dermofit-imagelibrary.html?item=dermofit-image-library] (accessed 04.01.2021).
Google Scholar
Gavrilov D., Lazarenko L., Zakirov E.: AI recognition in skin pathologies detection. Proceedings of the 2019 International Conference on Artificial Intelligence: Applications and Innovations (IC-AIAI), 554–542, Belgrade 2019.
DOI: https://doi.org/10.1109/IC-AIAI48757.2019.00017
Google Scholar
Ge Y. et al.: Melanoma segmentation and classification in clinical images using deep learning. 10th International Conference on Machine Learning and Computing ICMLC, 2018, 252–256.
DOI: https://doi.org/10.1145/3195106.3195164
Google Scholar
Gessert N. et al.: Skin lesion classification using CNNs with patch-based attention and diagnosis-guided loss weighting. IEEE Trans. Biomed. Eng. 67, 495–503, 2020.
DOI: https://doi.org/10.1109/TBME.2019.2915839
Google Scholar
Haenssle H. A. et al: Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermato-logists working under less artificial conditions. Ann Oncol 31, 137–143, 2020.
Google Scholar
Harangi B.: Skin lesion classification with ensembles of deep convolutional neural networks. J. Biomed. Inform. 86, 25–32, 2018.
DOI: https://doi.org/10.1016/j.jbi.2018.08.006
Google Scholar
Hasan M. M., Elahi M., Alam M. A.: DermoExpert: Skin lesion classification using a hybrid convolutional neural network through segmentation, transfer learning and augmentation. medRxiv 2021.02.02.21251038.
DOI: https://doi.org/10.1101/2021.02.02.21251038
Google Scholar
He K. et al.: Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016, 770–778.
DOI: https://doi.org/10.1109/CVPR.2016.90
Google Scholar
Hekler A. et al.: Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images, Eur J Cancer 118, 91–96, 2019.
DOI: https://doi.org/10.1016/j.ejca.2019.06.012
Google Scholar
Howard A. G. et al.: MobileNets: Efficient convolutional neural networks for mobile vision applications. Computer Science, Computer Vision and Pattern Recognition, arXiv:1704.04861v1.
Google Scholar
Huang G. et al.: Densely Connected Convolutional Networks. Computer Vision and Pattern Recognition arXiv:1608.06993v5.
Google Scholar
Iqbal I. et al.: Automated multi-class classification of skin lesions through deep convolutional neural network with dermoscopic images. Computerized Medical Imaging and Graphics 88, 101843, 2021.
DOI: https://doi.org/10.1016/j.compmedimag.2020.101843
Google Scholar
ISIC Archive [https://www.isic-archive.com/#!/topWithHeader/onlyHeaderTop/gallery] (accessed 23.03.2022).
Google Scholar
Kareem O., Mohsin Abdulazeez A., Zeebaree D.: Skin Lesions Classification Using Deep Learning Techniques: Review. Asian Journal of Research in Computer Science 9(1), 1–22, 2021.
DOI: https://doi.org/10.9734/ajrcos/2021/v9i130210
Google Scholar
Lee S. et al.: Augmented decision-making for acrallentiginous melanoma detection using deep convolutional neural networks. J. Eur. Acad. Dermatol. Venereol. 34, 1842–1850, 2020.
DOI: https://doi.org/10.1111/jdv.16185
Google Scholar
Lopez A. R. et al.: Skin lesion classification from dermatoscopic images using deep learning techniques. 13th International Conference on Biomedical Engineering (BioMed) IASTED, 2017, 49–54.
Google Scholar
Maglogiannis I., Doukas C. N.: Overview of advanced computer vision systems for skin lesions characterization, IEEE transactions on information technology in biomedicine 13(5), 721–733, 2009.
DOI: https://doi.org/10.1109/TITB.2009.2017529
Google Scholar
Mahbod A. et al.: Fusing finetuned deep features for skin lesion classification, Comput. Med. Imaging Graph. 71, 19–29, 2019.
DOI: https://doi.org/10.1016/j.compmedimag.2018.10.007
Google Scholar
Mahdianpari M. et al.: Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery. Remote Sens. 10(7), 2018.
DOI: https://doi.org/10.3390/rs10071119
Google Scholar
Marchetti M. A. et al.: Computer algorithms show potential for improving dermatologists’ accuracy to diagnose cutaneous melanoma: results of the international skin imaging collaboration 2017. J Am Acad Dermatol 82, 622–627, 2020.
DOI: https://doi.org/10.1016/j.jaad.2019.07.016
Google Scholar
Maron R. C. et al.: Systematic outperformance of 112 dermato-logists in multiclass skin cancer image classification by convo-lutional neural networks, Eur J Cancer 119, 57–65, 2019.
Google Scholar
MED-NODE Dataset [http://www.cs.rug.nl/~imaging/databases/melanoma_naevi/] (accessed 23.03.2022).
DOI: https://doi.org/10.48189/nl.2022.v03i2.004
Google Scholar
Nida N. et al.: Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy C-means clustering, International Journal of Medical Informatics 124, 37–48, 2019.
DOI: https://doi.org/10.1016/j.ijmedinf.2019.01.005
Google Scholar
PAD-UFES-20 Dataset [https://data.mendeley.com/datasets/zr7vgbcyr2/1] (accessed: 23.03.2022).
Google Scholar
PH2 Dataset [https://www.fc.up.pt/addi/ph2%20database.html] (accessed 23.03.2022).
Google Scholar
Qin Z. et al.: A GAN-based image synthesis method for skin lesion classification. Computer Methods and Programs in Biomedicine, 105568, 2020.
DOI: https://doi.org/10.1016/j.cmpb.2020.105568
Google Scholar
Raza R. et al.: Melanoma Classification from dermoscopy images using ensemble of convolutional neural networks. Mathematics 10, 26, 2022.
DOI: https://doi.org/10.3390/math10010026
Google Scholar
Sandler M. et al.: MobileNetV2: Inverted Residuals and Linear Bottlenecks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, 4510–4520.
DOI: https://doi.org/10.1109/CVPR.2018.00474
Google Scholar
Simonyan K., Zisserman A.: Very deep convolutional networks for large-scale image recognition. International Conference on Learning Representations ICLR, 2015.
Google Scholar
Szegedy C. et al.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. AAAI, 4278–4284, 2017.
DOI: https://doi.org/10.1609/aaai.v31i1.11231
Google Scholar
Tschandl P. et al.: Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, webbased, international, diagnostic study. Lancet Oncol 2019b(20), 938–947, 2019.
DOI: https://doi.org/10.1016/S1470-2045(19)30333-X
Google Scholar
Villa-Pulgarin J. et al.: Optimized convolutional neural network models for skin lesion classification, Computers, Materials & Continua Tech Science Press, CMC 70(2), 2022
DOI: https://doi.org/10.32604/cmc.2022.019529
Google Scholar
Yu C. et al.: Acral melanoma detection using a convolutional neural network for dermoscopy images. PLoS ONE 2018, 13, e0193321, 2018.
DOI: https://doi.org/10.1371/journal.pone.0193321
Google Scholar
Zakład Epidemiologii i Prewencji Nowotworów Centrum Onkologii – Instytut w Warszawie. Krajowy Rejestr Nowotworów (KRN) [http://onkologia.org.pl/] (accessed 02.08.2019).
Google Scholar
Authors
Magdalena Michalska-Ciekańskammagamichalska@gmail.com
Lublin University of Technology Poland
http://orcid.org/0000-0002-0874-3285
Statistics
Abstract views: 222PDF downloads: 299
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Magdalena Michalska-Ciekańska, NEURAL NETWORKS FROM KERAS IN SKIN LESION DIAGNOSTIC , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 1 (2022)