DYNAMIC AND MATHEMATICAL MODELS OF THE HYDROIMPULSIVE VIBRO-CUTTING DEVICE WITH A PRESSURE PULSE GENERATOR BULT INTO THE RING SPRING

Roman Obertyukh


Vinnytsia National Technical University (Ukraine)
http://orcid.org/0000-0003-2939-6582

Andrіі Slabkyі


Vinnytsia National Technical University (Ukraine)
http://orcid.org/0000-0001-9284-2296

Leonid Polishchuk

leo.polishchuk@gmail.com
Vinnytsia National Technical University (Ukraine)
http://orcid.org/0000-0002-5916-2413

Oleksandr Povstianoi


Lutsk National Technical University (Ukraine)
http://orcid.org/0000-0002-1416-225X

Saule Kumargazhanova


D. Serikbayev East Kazakhstan Technical University (Kazakhstan)
http://orcid.org/0000-0002-6744-4023

Maxatbek Satymbekov


Al-Farabi Kazakh National University (Kazakhstan)
http://orcid.org/0000-0002-4621-6646

Abstract

Structural calculation scheme of the hydropulse device for vibration cutting with built-in ring with pressure pulse generator (PPG) is considered. On the basis of the structural scheme and cyclogram of the working cycle of the device, its dynamic and mathematical models were developed, in which the hydraulic link is represented by a visco-elastic model of the working fluid (energy carrier) composed of the inertial elastic and dissipative elements (Kelvin-Foyga's body).


Keywords:

mathematical model, dynamic model, hydropulse device, ring spring, frequency, amplitude

Abramov E. I. et al.: Elements of the hydraulic drive: reference book. Technics, Kiev 1977.
  Google Scholar

Berezyuk O. V.: Mathematical modeling of the hydraulic drive dynamics of the working bodies of the container reversal during the loading of solid household waste in the garbage truck. Bulletin of Khmelnytsky National University 5, 2013.
  Google Scholar

Bocharov Yu. A.: Fundamentals of the general theory of hydraulic forge-stamping machines. Machinery and technology of metal processing by pressure. Collection of scientific works MVTU 330, 1980, 12–40.
  Google Scholar

Chuprakov Yu. I.: Hydraulic actuator and means of hydraulics. Engineering 1979.
  Google Scholar

Cieplok G.: Estimation of the resonance amplitude in machines with inertia vibrator in the coast-down phase. Mechanics & Industry 19(102), 2018.
DOI: https://doi.org/10.1051/meca/2017035   Google Scholar

Danilchik S. S.: Vibration turning of structural steels. BNTU, Minsk 2018.
  Google Scholar

Gursky V. et al.: Dynamic Analysis of an Enhanced Multi‐Frequency Inertial Exciter for Industrial Vibrating Machines. Machines 10(130), 2022.
DOI: https://doi.org/10.3390/machines10020130   Google Scholar

Iskovich-Lototskiy R. D. et al.: Pressure pulse generators for controlling the hydropulse drives of vibratory and vibration damping technological machines. UNIVERSUM, Vinnitsya 2008.
  Google Scholar

Iskovich-Lototskiy R. D. et al.: Vibration and vibro-shock machines. Technics, Kiev 1982.
  Google Scholar

Khmara L. A. et al.: Algorithm to calculate work tools of machines for performance in extreme working conditions. Mechatronic Systems I. Applicationsin Transport, Logistics, Diagnostics and Control. Taylor & Francis Group – CRC Press, New York 2021, 29–38.
DOI: https://doi.org/10.1201/9781003224136-3   Google Scholar

Kozlov L. et al.: Optimization of design parameters of a counterbalance valve for a hydraulic drive invariant to reversal loads. Mechatronic Systems I. Applications in Transport, Logistics, Diagnostics and Control. Taylor & Francis Group –CRC Press, New York 2021, 137–148.
DOI: https://doi.org/10.1201/9781003224136-12   Google Scholar

Kozlov L. G. et al.: Experimental research characteristics of counterbalance valve for hydraulic drive control system of mobile machine. Przegląd Elektrotechniczny 95(4), 2019, 104–109.
DOI: https://doi.org/10.15199/48.2019.04.18   Google Scholar

Obertyukh R. et al.: Mathematical Modeling of the Device for Radial Vibroturning. Advanced Manufacturing Processes II. Inter Partner, Springer, Cham. 2020.
DOI: https://doi.org/10.1007/978-3-030-68014-5_55   Google Scholar

Obertyukh R. et al.: Method of design calculation of a hydropulse device for strain hardening of materials. Przegląd Elektrotechniczny 4, 2019, 65–73.
DOI: https://doi.org/10.15199/48.2019.04.12   Google Scholar

Obertyukh R. R. et al.: Dynamic and mathematical models of the hydraulic-pulse device for deformation strengthening of materials. Proc. 10808, 2018.
  Google Scholar

Obertyukh R. R. et al.: Pat No 76517 Ukraine, IPC (2013, 01) В23В 1/00. Hydropulse vibrationshock device for radial and axial vibration turning with integrated pulse generator type pressure valve. Applicant and owner of the Vinnytsia National Technical University. 10.01.2013. Bull No. 1.
  Google Scholar

Polishchuk L. et al.: Mechatronic Systems II. Applications in Material Handling Processes and Robotics. Taylor & Francis Group – CRC Press, Boca Raton, London, New York, Leiden 2021.
DOI: https://doi.org/10.1201/9781003225447   Google Scholar

Ponomarev S. D., Andreeva L. E.: Calculation of elastic elements of machines and instruments. Machine-building, Moscow 1980.
  Google Scholar

Roganov L. L., Karnaukh S. G.: Calculation of springs and elastic shock absorbers. DSEA, Kramatorsk 2000.
  Google Scholar

Song T.: Rapid Calculation and Optimization of Vibration and Noise of Permanent-Magnet Synchronous Motors for EVs Based on Equivalent Structural Network. Machines 10(4), 2022, 281.
DOI: https://doi.org/10.3390/machines10040281   Google Scholar

Wójcik W. et al.: Mechatronic Systems I. Applications in Transport, Logistics, Diagnostics and Control. Taylor & Francis Group –CRC Press, London, New York 2021.
DOI: https://doi.org/10.1201/9781003224136   Google Scholar

Download


Published
2022-09-30

Cited by

Obertyukh, R., Slabkyі A., Polishchuk, L., Povstianoi, O., Kumargazhanova, S., & Satymbekov, M. (2022). DYNAMIC AND MATHEMATICAL MODELS OF THE HYDROIMPULSIVE VIBRO-CUTTING DEVICE WITH A PRESSURE PULSE GENERATOR BULT INTO THE RING SPRING. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 12(3), 54–58. https://doi.org/10.35784/iapgos.3049

Authors

Roman Obertyukh 

Vinnytsia National Technical University Ukraine
http://orcid.org/0000-0003-2939-6582

Authors

Andrіі Slabkyі 

Vinnytsia National Technical University Ukraine
http://orcid.org/0000-0001-9284-2296

Authors

Leonid Polishchuk 
leo.polishchuk@gmail.com
Vinnytsia National Technical University Ukraine
http://orcid.org/0000-0002-5916-2413

Authors

Oleksandr Povstianoi 

Lutsk National Technical University Ukraine
http://orcid.org/0000-0002-1416-225X

Authors

Saule Kumargazhanova 

D. Serikbayev East Kazakhstan Technical University Kazakhstan
http://orcid.org/0000-0002-6744-4023

Authors

Maxatbek Satymbekov 

Al-Farabi Kazakh National University Kazakhstan
http://orcid.org/0000-0002-4621-6646

Statistics

Abstract views: 329
PDF downloads: 167