OVERLOAD AND TRAFFIC MANAGEMENT OF MESSAGE SOURCES WITH DIFFERENT PRIORITY OF SERVICE
Article Sidebar
Open full text
Issue Vol. 13 No. 3 (2023)
-
MODELING AND ANALYSIS OF SYSTOLIC AND DIASTOLIC BLOOD PRESSURE USING ECG AND PPG SIGNALS
Oleksandr Vasilevskyi, Emanuel Popovici, Volodymyr Sarana5-10
-
SEGMENTATION OF CANCER MASSES ON BREAST ULTRASOUND IMAGES USING MODIFIED U-NET
Ihssane Khallassi, My Hachem El Yousfi Alaoui, Abdelilah Jilbab11-15
-
CLASSIFICATION OF PARKINSON’S DISEASE AND OTHER NEUROLOGICAL DISORDERS USING VOICE FEATURES EXTRACTION AND REDUCTION TECHNIQUES
Oumaima Majdoubi, Achraf Benba, Ahmed Hammouch16-22
-
DEVELOPMENT OF THE POWER SUPPLY AND CONTROL SYSTEM FOR THE HEMODIALYSIS MACHINE
Volodymyr Yaskiv, Anna Yaskiv23-28
-
VALIDATION OF A THREE-DIMENSIONAL HEAD PHANTOM FOR IMAGING DATA
Jolanta Podolszańska29-32
-
OVERLOAD AND TRAFFIC MANAGEMENT OF MESSAGE SOURCES WITH DIFFERENT PRIORITY OF SERVICE
Valerii Kozlovskyi, Valerii Kozlovskyi, Andrii Toroshanko, Oleksandr Toroshanko, Natalia Yakumchuk33-36
-
RESEARCH ON CALCULATION OPTIMIZATION METHODS USED IN COMPUTER GAMES DEVELOPMENT
Natali Fedotova, Maksim Protsenko, Iryna Baranova, Svitlana Vashchenko, Yaroslava Dehtiarenko37-42
-
ANALYSIS OF THE QUALITY OF PRINTED PLA SAMPLES USING VARIOUS 3D PRINTERS AND PRINT PREPARATION PROGRAMS
Karolina Tomczyk, Albert Raczkiewicz, Magdalena Paśnikowska-Łukaszuk43-46
-
SEGMENTATION OF MULTIGRADATION IMAGES BASED ON SPATIAL CONNECTIVITY FEATURES
Leonid Timchenko, Natalia Kokriatskaya, Volodymyr Tverdomed, Oleksandr Stetsenko, Valentina Kaplun, Oleg K. Kolesnytskyj, Oleksandr Reshetnik; Saule Smailova; Ulzhalgas Zhunissova47-50
-
IMPLEMENTATION OF COMPUTER PROCESSING OF RELAXATION PROCESSES INVESTIGATION DATA USING EXTENDED EXPONENTIAL FUNCTION
Andrey Lozovskyi, Alexander Lyashkov, Igor Gomilko, Alexander Tonkoshkur51-55
-
URBAN TRAFFIC CRASH ANALYSIS USING DEEP LEARNING TECHNIQUES
Mummaneni Sobhana, Nihitha Vemulapalli, Gnana Siva Sai Venkatesh Mendu, Naga Deepika Ginjupalli, Pragathi Dodda, Rayanoothala Bala Venkata Subramanyam56-63
-
UNBALANCED MULTICLASS CLASSIFICATION WITH ADAPTIVE SYNTHETIC MULTINOMIAL NAIVE BAYES APPROACH
Fatkhurokhman Fauzi, . Ismatullah, Indah Manfaati Nur64-70
-
COMPARISON OF THE EFFECTIVENESS OF TIME SERIES ANALYSIS METHODS: SMA, WMA, EMA, EWMA, AND KALMAN FILTER FOR DATA ANALYSIS
Volodymyr Lotysh, Larysa Gumeniuk, Pavlo Humeniuk71-74
-
A STANDALONE DC MICROGRID ENERGY MANAGEMENT STRATEGY USING THE BATTERY STATE OF CHARGE
Elvin Yusubov, Lala Bekirova75-78
-
MACROMODELING OF LOCAL POWER SUPPLY SYSTEM BALANCE FORECASTING USING FRACTAL PROPERTIES OF LOAD AND GENERATION SCHEDULES
Daniyar Jarykbassov, Petr Lezhniuk, Iryna Hunko, Vladyslav Lysyi, Lyubov Dobrovolska79-82
-
PV PANEL COOLING USING STACK EFFECT
Kudith Nageswara Rao, Ganesamoorthy Rajkuma83-85
-
A NEW AUTOMATIC INTELLIGENCE-BASED SOLAR LOAD CONTROL SYSTEM
Kudith Nageswara Rao, Ganesamoorthy Rajkuma86-89
-
OPTIMIZATION OF PARTS CUTTING PROCESS PARAMETERS WORKING IN CONDITIONS OF CYCLIC LOADS
Kateryna Barandych, Sergii Vysloukh, Grygoriy Tymchyk, Oleksandr Murashchenko, Saule Smailova, Saule Kumargazhanova90-93
-
RESEARCH THE EFFECT OF THE FRACTIONAL NUMBER SLOTS OF POLE ON WIND TURBINE GENERATION USING THE ENHANCED SPOTTED HYENA OPTIMIZATION ALGORITHM
Ibrahim M. Aladwan, Hasan Abdelrazzaq AL Dabbas, Ayman. M. Maqableh, Sayel M. Fayyad, Oleksandr Miroshnyk, Taras Shchur, Vadym Ptashnyk94-100
-
NEW SURFACE REFLECTANCE MODEL WITH THE COMBINATION OF TWO CUBIC FUNCTIONS USAGE
Oleksandr Romanyuk, Yevhen Zavalniuk, Sergii Pavlov, Roman Chekhmestruk, Zlata Bondarenko, Tetiana Koval, Aliya Kalizhanova, Aigul Iskakova101-106
-
THE CONCEPT OF ELECTRONIC CONTROL UNIT FOR COMBUSTION ENGINE IN HYBRID TANDEM
Tomasz Zyska, Marcin Powązka, Bartłomiej Forysiuk107-110
-
TESLA SWITCH OF 4 BATTERIES BASED ON THE ARDUINO UNO BOARD
Mykola Polishchuk, Serhii Grinyuk, Serhii Kostiuchko, Anatolii Tkachuk, Pavlo Savaryn111-116
-
REMOTE SOTA ALGORITHM FOR NB-IOT WIRELESS SENSORS – IMPLEMENTATION AND RESULTS
Piotr Szydłowski, Karol Zaręba117-120
-
DEVELOPMENT OF A SOFTWARE SYSTEM FOR PREDICTING EMPLOYEE RATINGS
Gulnar Balakayeva, Dauren Darkenbayev, Mukhit Zhanuzakov121-124
-
ENGINEERING AND TECHNICAL ASSESSMENT OF THE COMPETITIVENESS OF UKRAINIAN MECHANICAL ENGINEERING ENTERPRISES BASED ON THE APPLICATION OF REGRESSION MODELS
Anna Vitiuk, Leonid Polishchuk, Nataliia B. Savina, Oksana O. Adler, Gulzhan Kashaganova, Saule Kumargazhanova125-128
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
The scheme of dynamic management of traffic and activity of message sources with different priority of service is considered. The scheme is built on the basis of the neuroprognostic analysis model and the gradient descent method. For prediction and early detection of overload, the apparatus of the general theory of sensitivity with indirect feedback and control of activity of message sources is used. The control algorithm is started at the bottleneck of the network node. It uses a recursive prediction approach where the neural network output is referred to as many steps as defined by a given prediction horizon. Traffic with a higher priority is served without delay using the entire available bandwidth. Low-priority traffic will use the remaining bandwidth not used by higher-priority traffic. An algorithm for estimating the maximum available bandwidth of a communication node for traffic with a low service priority has been developed. This approach makes it possible to improve the efficiency of channel use without affecting the quality of service for high-priority traffic.
Keywords:
References
Bonaventure O.: Computer Networking: Principles, Protocols and Practices. Release. 2018.
Golmohammadi A.: Prioritizing Service Quality Dimensions: A Neural Network Approach. World Academy of Science, Engineering & Technology 42, 2010, 602–605.
Göransson P. et al.: Software Defined Networks: A Comprehensive Approach, 2nd ed. Morgan Kaufmann, 2017.
Klymash M. M., Strykhaliuk B. M., Kaidan M. V.: Teoreticheskiye osnovy telekommunikatsionnykh setyei. LAP LAMBERT Academic Publishing, Saarbrücken 2014.
Korolkova A. V., Kulyabov D. S., Tchernoivanov A. I.: On the Classification of RED Algorithms. Bulletin of the Russian Peoples' Friendship University 3, 2009, 34–46.
Kurose J. F., Keith W. R.: Computer Networking: A Top-Down Approach, 7th Ed. Pearson Education, Inc., 2017.
Lu Z. et al.: Overload Control for Signaling Congestion of Machine Type Communications in 3GPP Networks. PLOS ONE, 2016. [http://doi.org/10.1371/journal.pone.0167380]. DOI: https://doi.org/10.1371/journal.pone.0167380
Maximov V. V., Chmykhun S. O.: Classification of algorithms of controlling networks congestions. Scientific proceeding of Ukrainian Research Institute of Communication 5(33), 2014, 73–79.
Maxymov V. V., Chmykhun S. O.: Research of the algorithm of controlling congestion TCP Veno. Telecommunication and Information Technologies 4, 2015, 30–36.
Shooman M. L.: Reliability of Computer Systems and Networks – Fault Tolerance, Analysis, Design. JohnWiley&Sons, Inc., NewYork 2002. DOI: https://doi.org/10.1002/047122460X
Snarskyy A. A., Lande D. V.: Modelyrovanye slozhnыkh setey. Kyiv 2015.
Stallings W.: Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud. Pearson Education, Inc., Old Tappan, New Jersey 2016.
Tanenbaum A. S., Wetherall D. J.: Computer Networks. Prentice Hall, Cloth, 2011.
Tasad R., Ruggieri M.: Technology Trends in Wireless Communications. Artech House, Boston – London 2003.
Tkachuk A. et al.: Basic Stations Work Optimization in Cellular Communication Network. D. Cagánová et al. (eds.), Advances in Industrial Internet of Things, Engineering and Management, EAI. Springer Innovations in Communication and Computing, 2021, 1–19. DOI: https://doi.org/10.1007/978-3-030-69705-1_1
Toroshanko O. S.: Multi-step model for prognostication and detection of telecommunication network overload. Telecommunication and Information Technologies 2(63), 2019, 35–43.
Toroshanko Ya. I.: Sensitivity analysis of systems of mass service on the base of model of adaptation and regulation of foreign traffic. Herald of Khmelnytskyi national university 6(243), 2016, 171–175.
Vinogradov N. et al.: Development of the Method to Control Telecommunication Network Congestion Based on a Neural Model. Eastern-European Journal of Enterprise Technologies 2(9), 2019, 67–73. DOI: https://doi.org/10.15587/1729-4061.2019.164087
Vynohradov N. A., Drovovozov V. Y., Lesnaya N. N., Zembytskaya A. S.: Analyz nahruzky na sety peredachy dannыkh v systemakh krytychnoho prymenenyya. Zvyazok 1(61), 2006, 9–12.
Article Details
Abstract views: 349
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
