TONTOR ZONES MODEL FOR AUTOMATIVE OBJECT MONITORING

Gregory Tymchyk

deanpb@kpi.ua
National Technical University of Ukraine “Sikorsky Kyiv Polytechnic Institute" (Ukraine)
http://orcid.org/0000-0003-1079-998X

Volodymyr Skytsiouk


National Technical University of Ukraine “Sikorsky Kyiv Polytechnic Institute” (Ukraine)
http://orcid.org/0000-0003-1783-3124

Tatiana Klotchko


National Technical University of Ukraine “Sikorsky Kyiv Polytechnic Institute” (Ukraine)
http://orcid.org/0000-0003-3911-5369

Roman Akselrod


Kyiv National University of Construction and Architecture (Ukraine)
http://orcid.org/0000-0001-7643-7194

Valerii Shenfeld


Vinnytsia National Technical University (Ukraine)
http://orcid.org/0000-0002-5548-6971

Aliya Kalizhanova


Institute of Information and Computational Technologies CS MHES RK (Kazakhstan)
http://orcid.org/0000-0002-5979-9756

Didar Yedilkhan


Astana IT University (Kazakhstan)
http://orcid.org/0000-0002-6343-5277

Gaukhar Borankulova


Taraz Regional University M. Kh. Dulaty (Kazakhstan)
http://orcid.org/0000-0001-5701-8074

Abstract

The paper presents the results of analytical modeling of the case of the presence zone of an abstract object characterized by a solid mass. It has several zones of presence based on the foundations of the TONTOR theory. Research determined that the discrete solid-state zone of the presence characterizes the solid part of the AE itself or the particles that form the surrounding space near the abstract entity and is the most powerful zone among the existing zones. The proposed model for determining the parameters of TONTOR zones of an object provides the possibility of analyzing the state of this object during its movements in the working space and metrological measurements of coordinates. These metrological aspects in the automatic mode of operation of object state analysis system determine the properties that increase the accuracy and speed of operations for calculating object movement trajectories in various fields of research.


Keywords:

abstract entity, Pandan zone, automative monitoring

Beer F. P. et al.: Mechanics of Materials. McGraw-Hill Education Private Limited, New Delhi 2017.
  Google Scholar

Bonnie A. S. et al.: The Dynamics of Small Bodies in the Solar System. A Major Key to Solar Systems Studies. Springer Science & Business Media, 1998.
  Google Scholar

Globa L. et al.: Approach to building uniform information platform for the national automated ecological information and analytical system. CEUR Workshop Proceedings 3021, 2021, 53–65.
  Google Scholar

Globa L. et al.: Approach to Uniform Platform Development for the Ecology Digital Environment of Ukraine. Progress in Advanced Information and Communication Technology and Systems, 2022, 83–100, [http://doi.org/10.1007/978-3-031-16368-5].
DOI: https://doi.org/10.1007/978-3-031-16368-5_4   Google Scholar

Karp B., Durban D.: Saint-Venant’s Principle in Dynamics of Structures. Appl. Mech. Rev. 64(2), 2011 [http://doi.org/10.1115/1.4004930].
DOI: https://doi.org/10.1115/1.4004930   Google Scholar

Kittel C.: Introduction to Solid State Physics, 8th Edition. Wiley, 2004.
  Google Scholar

Korn G. A., Korn T. M..: Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (Dover Civil and Mechanical Engineering), 2 Revised Edition. Dover Publications 2000.
  Google Scholar

Kukharchuk V. et al.: Features of the angular speed dynamic measurements with the use of an encoder. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 12(3), 2022, 20–26.
DOI: https://doi.org/10.35784/iapgos.3035   Google Scholar

Levchuk S. A., Khmelnytskyi A. A.: Stress-strain state calculation procedure for compound technical objects using potential theory methods. Strength Mater., 47(5), 2015, 705–710 [http://doi.org/10.1007/s11223-015-9707-2].
DOI: https://doi.org/10.1007/s11223-015-9707-2   Google Scholar

Lezhniuk P. et al.: The Sensitivity of the Model of the Process Making the Optimal Decision for Electric Power Systems in Relative Units. IEEE KhPI Week on Advanced Technology, 2020, 247–252.
DOI: https://doi.org/10.1109/KhPIWeek51551.2020.9250079   Google Scholar

Misner Ch. W., Thorne K. S., Wheeler J. A.: Gravitation. Freeman, San Francisco 1973.
  Google Scholar

Polishchuk L. et al.: Mechatronic Systems 2. Applications in Material Handling Processes and Robotics. Taylor & Francis Group, CRC Press, Balkema book, Boca Raton, London, New York, Leiden 2021 [http://doi.org/10.1201/9781003225447].
DOI: https://doi.org/10.1201/9781003225447   Google Scholar

Polzer G., Meissner F.: Grundlagen zu Reibung und Verschleiss. VEB Deutscher Verlag fur Grundstoffindustrie, Leipzig 1983.
  Google Scholar

Skoog D. A., Leary J. J.: Principles of Instrumental Analysis, Fourth Edition. Saunders College Publishing, Fort-Worth, Philadelphia, San Diego, New York, Orlando, Austin, San Antonio, Toronto, Montreal, London, Sydney, Tokyo 1992.
  Google Scholar

Tymchyk G. S. et al.: Distortion of Phantom Object's Realizations in Biological Presence Zone. IEEE 40th International Conference on Electronics and Nanotechnology – ELNANO 2020, 2020, 464–468.
DOI: https://doi.org/10.1109/ELNANO50318.2020.9088896   Google Scholar

Tymchyk G. S. et al.: Distortion of geometric elements in the transition from the imaginary to the real coordinate system of technological equipment. Proc. SPIE 10808, 2018, 108085C [http://doi.org/10.1117/12.2501624].
DOI: https://doi.org/10.1117/12.2501624   Google Scholar

Tymchyk G. S. et al.: Forces balance in the coordinate system of object's existence 3D space. Proc. SPIE 12476, 2022, 124760U [http://doi.org/10.1117/12.2659188].
DOI: https://doi.org/10.1117/12.2659188   Google Scholar

Walker G.: Astronomical Observations: an optical perspective. Cambridge University Press, Cambridge 1987.
  Google Scholar

Walsh A., Willis J. B.: Atomic Absorption Spectrometry. Standard Methods of Chemical Analysis 3A, 1966.
  Google Scholar

Wójcik W. et al.: Mechatronic Systems I. Applications in Transport, Logistics, Diagnostics and Control. Taylor & Francis Group, CRC Press, Balkema book, London, New York 2021.
DOI: https://doi.org/10.1201/9781003224136   Google Scholar

Download


Published
2023-06-30

Cited by

Tymchyk, G., Skytsiouk, V., Klotchko, T., Akselrod, R., Shenfeld, V., Kalizhanova, A., … Borankulova, G. (2023). TONTOR ZONES MODEL FOR AUTOMATIVE OBJECT MONITORING. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 13(2), 36–43. https://doi.org/10.35784/iapgos.3518

Authors

Gregory Tymchyk 
deanpb@kpi.ua
National Technical University of Ukraine “Sikorsky Kyiv Polytechnic Institute" Ukraine
http://orcid.org/0000-0003-1079-998X

Authors

Volodymyr Skytsiouk 

National Technical University of Ukraine “Sikorsky Kyiv Polytechnic Institute” Ukraine
http://orcid.org/0000-0003-1783-3124

Authors

Tatiana Klotchko 

National Technical University of Ukraine “Sikorsky Kyiv Polytechnic Institute” Ukraine
http://orcid.org/0000-0003-3911-5369

Authors

Roman Akselrod 

Kyiv National University of Construction and Architecture Ukraine
http://orcid.org/0000-0001-7643-7194

Authors

Valerii Shenfeld 

Vinnytsia National Technical University Ukraine
http://orcid.org/0000-0002-5548-6971

Authors

Aliya Kalizhanova 

Institute of Information and Computational Technologies CS MHES RK Kazakhstan
http://orcid.org/0000-0002-5979-9756

Authors

Didar Yedilkhan 

Astana IT University Kazakhstan
http://orcid.org/0000-0002-6343-5277

Authors

Gaukhar Borankulova 

Taraz Regional University M. Kh. Dulaty Kazakhstan
http://orcid.org/0000-0001-5701-8074

Statistics

Abstract views: 77
PDF downloads: 87


Most read articles by the same author(s)