UNBALANCED MULTICLASS CLASSIFICATION WITH ADAPTIVE SYNTHETIC MULTINOMIAL NAIVE BAYES APPROACH
Article Sidebar
Open full text
Issue Vol. 13 No. 3 (2023)
-
MODELING AND ANALYSIS OF SYSTOLIC AND DIASTOLIC BLOOD PRESSURE USING ECG AND PPG SIGNALS
Oleksandr Vasilevskyi, Emanuel Popovici, Volodymyr Sarana5-10
-
SEGMENTATION OF CANCER MASSES ON BREAST ULTRASOUND IMAGES USING MODIFIED U-NET
Ihssane Khallassi, My Hachem El Yousfi Alaoui, Abdelilah Jilbab11-15
-
CLASSIFICATION OF PARKINSON’S DISEASE AND OTHER NEUROLOGICAL DISORDERS USING VOICE FEATURES EXTRACTION AND REDUCTION TECHNIQUES
Oumaima Majdoubi, Achraf Benba, Ahmed Hammouch16-22
-
DEVELOPMENT OF THE POWER SUPPLY AND CONTROL SYSTEM FOR THE HEMODIALYSIS MACHINE
Volodymyr Yaskiv, Anna Yaskiv23-28
-
VALIDATION OF A THREE-DIMENSIONAL HEAD PHANTOM FOR IMAGING DATA
Jolanta Podolszańska29-32
-
OVERLOAD AND TRAFFIC MANAGEMENT OF MESSAGE SOURCES WITH DIFFERENT PRIORITY OF SERVICE
Valerii Kozlovskyi, Valerii Kozlovskyi, Andrii Toroshanko, Oleksandr Toroshanko, Natalia Yakumchuk33-36
-
RESEARCH ON CALCULATION OPTIMIZATION METHODS USED IN COMPUTER GAMES DEVELOPMENT
Natali Fedotova, Maksim Protsenko, Iryna Baranova, Svitlana Vashchenko, Yaroslava Dehtiarenko37-42
-
ANALYSIS OF THE QUALITY OF PRINTED PLA SAMPLES USING VARIOUS 3D PRINTERS AND PRINT PREPARATION PROGRAMS
Karolina Tomczyk, Albert Raczkiewicz, Magdalena Paśnikowska-Łukaszuk43-46
-
SEGMENTATION OF MULTIGRADATION IMAGES BASED ON SPATIAL CONNECTIVITY FEATURES
Leonid Timchenko, Natalia Kokriatskaya, Volodymyr Tverdomed, Oleksandr Stetsenko, Valentina Kaplun, Oleg K. Kolesnytskyj, Oleksandr Reshetnik; Saule Smailova; Ulzhalgas Zhunissova47-50
-
IMPLEMENTATION OF COMPUTER PROCESSING OF RELAXATION PROCESSES INVESTIGATION DATA USING EXTENDED EXPONENTIAL FUNCTION
Andrey Lozovskyi, Alexander Lyashkov, Igor Gomilko, Alexander Tonkoshkur51-55
-
URBAN TRAFFIC CRASH ANALYSIS USING DEEP LEARNING TECHNIQUES
Mummaneni Sobhana, Nihitha Vemulapalli, Gnana Siva Sai Venkatesh Mendu, Naga Deepika Ginjupalli, Pragathi Dodda, Rayanoothala Bala Venkata Subramanyam56-63
-
UNBALANCED MULTICLASS CLASSIFICATION WITH ADAPTIVE SYNTHETIC MULTINOMIAL NAIVE BAYES APPROACH
Fatkhurokhman Fauzi, . Ismatullah, Indah Manfaati Nur64-70
-
COMPARISON OF THE EFFECTIVENESS OF TIME SERIES ANALYSIS METHODS: SMA, WMA, EMA, EWMA, AND KALMAN FILTER FOR DATA ANALYSIS
Volodymyr Lotysh, Larysa Gumeniuk, Pavlo Humeniuk71-74
-
A STANDALONE DC MICROGRID ENERGY MANAGEMENT STRATEGY USING THE BATTERY STATE OF CHARGE
Elvin Yusubov, Lala Bekirova75-78
-
MACROMODELING OF LOCAL POWER SUPPLY SYSTEM BALANCE FORECASTING USING FRACTAL PROPERTIES OF LOAD AND GENERATION SCHEDULES
Daniyar Jarykbassov, Petr Lezhniuk, Iryna Hunko, Vladyslav Lysyi, Lyubov Dobrovolska79-82
-
PV PANEL COOLING USING STACK EFFECT
Kudith Nageswara Rao, Ganesamoorthy Rajkuma83-85
-
A NEW AUTOMATIC INTELLIGENCE-BASED SOLAR LOAD CONTROL SYSTEM
Kudith Nageswara Rao, Ganesamoorthy Rajkuma86-89
-
OPTIMIZATION OF PARTS CUTTING PROCESS PARAMETERS WORKING IN CONDITIONS OF CYCLIC LOADS
Kateryna Barandych, Sergii Vysloukh, Grygoriy Tymchyk, Oleksandr Murashchenko, Saule Smailova, Saule Kumargazhanova90-93
-
RESEARCH THE EFFECT OF THE FRACTIONAL NUMBER SLOTS OF POLE ON WIND TURBINE GENERATION USING THE ENHANCED SPOTTED HYENA OPTIMIZATION ALGORITHM
Ibrahim M. Aladwan, Hasan Abdelrazzaq AL Dabbas, Ayman. M. Maqableh, Sayel M. Fayyad, Oleksandr Miroshnyk, Taras Shchur, Vadym Ptashnyk94-100
-
NEW SURFACE REFLECTANCE MODEL WITH THE COMBINATION OF TWO CUBIC FUNCTIONS USAGE
Oleksandr Romanyuk, Yevhen Zavalniuk, Sergii Pavlov, Roman Chekhmestruk, Zlata Bondarenko, Tetiana Koval, Aliya Kalizhanova, Aigul Iskakova101-106
-
THE CONCEPT OF ELECTRONIC CONTROL UNIT FOR COMBUSTION ENGINE IN HYBRID TANDEM
Tomasz Zyska, Marcin Powązka, Bartłomiej Forysiuk107-110
-
TESLA SWITCH OF 4 BATTERIES BASED ON THE ARDUINO UNO BOARD
Mykola Polishchuk, Serhii Grinyuk, Serhii Kostiuchko, Anatolii Tkachuk, Pavlo Savaryn111-116
-
REMOTE SOTA ALGORITHM FOR NB-IOT WIRELESS SENSORS – IMPLEMENTATION AND RESULTS
Piotr Szydłowski, Karol Zaręba117-120
-
DEVELOPMENT OF A SOFTWARE SYSTEM FOR PREDICTING EMPLOYEE RATINGS
Gulnar Balakayeva, Dauren Darkenbayev, Mukhit Zhanuzakov121-124
-
ENGINEERING AND TECHNICAL ASSESSMENT OF THE COMPETITIVENESS OF UKRAINIAN MECHANICAL ENGINEERING ENTERPRISES BASED ON THE APPLICATION OF REGRESSION MODELS
Anna Vitiuk, Leonid Polishchuk, Nataliia B. Savina, Oksana O. Adler, Gulzhan Kashaganova, Saule Kumargazhanova125-128
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
Opinions related to rising fuel prices need to be seen and analysed. Public opinion is closely related to public policy in Indonesia in the future. Twitter is one of the media that people use to convey their opinions. This study uses sentiment analysis to look at this phenomenon. Sentiment is divided into three categories: positive, neutral, and negative. The methods used in this research are Adaptive Synthetic Multinomial Naive Bayes, Adaptive Synthetic k-nearest neighbours, and Adaptive Synthetic Random Forest. The Adaptive Synthetic method is used to handle unbalanced data. The data used in this study are public arguments per province in Indonesia. The results obtained in this study are negative sentiments that dominate all provinces in Indonesia. There is a relationship between negative sentiment and the level of education, internet use, and the human development index. Adaptive Synthetic Multinomial Naive Bayes performed better than other methods, with an accuracy of 0.882. The highest accuracy of the Adaptive Synthetic Multinomial Naive Bayes method is 0.990 in Papua Barat Province.
Keywords:
References
Ahuja R. et al.: The Impact of Features Extraction on the Sentiment Analysis. Procedia Computer Science 152, 2019, 341–348 [http://doi.org/10.1016/j.procs.2019.05.008]. DOI: https://doi.org/10.1016/j.procs.2019.05.008
Ali H. et al.: Deep Learning-Based Election Results Prediction Using Twitter Activity. Soft Computing 26(16), 2022, 7535–43 [http://doi.org/10.1007/s00500-021-06569-5]. DOI: https://doi.org/10.1007/s00500-021-06569-5
Amity U. et al.: Abstract Proceedings of International Conference on Automation, Computational and Technology Management (ICACTM-2019), 2019.
Andrian R. et al.: K-Nearest Neighbor (k-NN) Classification for Recognition of the Batik Lampung Motifs. Journal of Physics: Conference Series 1338(1), 2019 [http://doi.org/10.1088/1742-6596/1338/1/012061]. DOI: https://doi.org/10.1088/1742-6596/1338/1/012061
Asian J. et al.: Sentiment Analysis for the Brazilian Anesthesiologist Using Multi-Layer Perceptron Classifier and Random Forest Methods. Journal Online Informatika 7(1), 2022, 132 [http://doi.org/10.15575/join.v7i1.900]. DOI: https://doi.org/10.15575/join.v7i1.900
Balaram A., Vasundra S.: Prediction of Software Fault-Prone Classes Using Ensemble Random Forest with Adaptive Synthetic Sampling Algorithm. Automated Software Engineering 29(1), 2021, 6 [http://doi.org/10.1007/s10515-021-00311-z]. DOI: https://doi.org/10.1007/s10515-021-00311-z
Budiawan Zulfikar W. et al.: Sentiment Analysis on Social Media Against Public Policy Using Multinomial Naive Bayes. Scientific Journal of Informatics 10(1), 2023 [http://doi.org/10.15294/sji.v10i1.39952]. DOI: https://doi.org/10.15294/sji.v10i1.39952
Bustillos A. et al.: Approaching Dehumanizing Interactions: Joint Consideration of Other-, Meta-, and Self-Dehumanization. Current Opinion in Behavioral Sciences 49, 2023, 101233 [http://doi.org/10.1016/j.cobeha.2022.101233]. DOI: https://doi.org/10.1016/j.cobeha.2022.101233
Eberwein T.: ‘Trolls’ or ‘Warriors of Faith’?: Differentiating Dysfunctional Forms of Media Criticism in Online Comments. Journal of Information, Communication and Ethics in Society 18(1), 2020, 131–143 [http://doi.org/10.1108/JICES-08-2019-0090]. DOI: https://doi.org/10.1108/JICES-08-2019-0090
Farisi A. A. et al.: Sentiment Analysis on Hotel Reviews Using Multinomial Naive Bayes Classifier. Journal of Physics: Conference Series 1192(1), 2019 [http://doi.org/10.1088/1742-6596/1192/1/012024]. DOI: https://doi.org/10.1088/1742-6596/1192/1/012024
Gazali Mahmud F. et al.: Implementation Of K-Nearest Neighbor Algorithm With SMOTE For Hotel Reviews Sentiment Analysis. Sinkron: Jurnal Dan Penelitian Teknik Informatika 8(2), 2023, 595–602 [http://doi.org/10.33395/sinkron.v8i2.12214]. DOI: https://doi.org/10.33395/sinkron.v8i2.12214
Ghosh D., Cabrera J.: Enriched Random Forest for High Dimensional Genomic Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics 19(5), 2022, 2817–2828 [http://doi.org/10.1109/TCBB.2021.3089417]. DOI: https://doi.org/10.1109/TCBB.2021.3089417
Hasdyna N. et al.: Improving the Performance of K-Nearest Neighbor Algorithm by Reducing the Attributes of Dataset Using Gain Ratio. Journal of Physics: Conference Series 1566(1), 2020 [http://doi.org/10.1088/1742-6596/1566/1/012090]. DOI: https://doi.org/10.1088/1742-6596/1566/1/012090
He H. et al.: ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning. IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, 1322–1328 [http://doi.org/10.1109/IJCNN.2008.4633969]. DOI: https://doi.org/10.1109/IJCNN.2008.4633969
Herhianto A.: Sentiment Analysis Menggunakan Naive Bayes Classifier (Nbc) Pada Tweet Tentang Zakat. 2020.
Hossain E. et al.: Sentiment Polarity Detection on Bengali Book Reviews Using Multinomial Naive Bayes. Progress in Advanced Computing and Intelligent Engineering (ed.Chhabi Rani Panigrahi et al.), Springer Singapore, 2021, 281–292. DOI: https://doi.org/10.1007/978-981-33-4299-6_23
Hu Z. et al.: A Novel Wireless Network Intrusion Detection Method Based on Adaptive Synthetic Sampling and an Improved Convolutional Neural Network. IEEE Access 8, 2020, 195741–195751 [http://doi.org/10.1109/ACCESS.2020.3034015]. DOI: https://doi.org/10.1109/ACCESS.2020.3034015
Jalilifard A. et al.: Semantic Sensitive TF-IDF to Determine Word Relevance in Documents, 2020 [http://doi.org/10.1007/978-981-33-6977-1]. DOI: https://doi.org/10.1007/978-981-33-6987-0_27
Jiang C. et al.: Benchmarking State-of-the-Art Imbalanced Data Learning Approaches for Credit Scoring. Expert Systems with Applications 213, 2023, 118878 [http://doi.org/10.1016/j.eswa.2022.118878]. DOI: https://doi.org/10.1016/j.eswa.2022.118878
Koh J. E. W. et al: Automated Classification of Attention Deficit Hyperactivity Disorder and Conduct Disorder Using Entropy Features with ECG Signals. Computers in Biology and Medicine 140, 2022, 105120 [http://doi.org/10.1016/j.compbiomed.2021.105120]. DOI: https://doi.org/10.1016/j.compbiomed.2021.105120
Kurniasih A., Lindung P. M.: On the Role of Text Preprocessing in BERT Embedding-Based DNNs for Classifying Informal Texts. International Journal of Advanced Computer Science and Applications 13(6), 2022, 927–934 [http://doi.org/10.14569/IJACSA.2022.01306109]. DOI: https://doi.org/10.14569/IJACSA.2022.01306109
Kurniawati Y. E. et al.: Adaptive Synthetic-Nominal (ADASYN-N) and Adaptive Synthetic-KNN (ADASYN-KNN) for Multiclass Imbalance Learning on Laboratory Test Data. 2018 4th International Conference on Science and Technology (ICST), 2018, 1–6 [http://doi.org/10.1109/ICSTC.2018.8528679]. DOI: https://doi.org/10.1109/ICSTC.2018.8528679
Leelawat N. et al.: Twitter Data Sentiment Analysis of Tourism in Thailand during the COVID-19 Pandemic Using Machine Learning. Heliyon 8(10), 2022, e10894 [http://doi.org/10.1016/j.heliyon.2022.e10894]. DOI: https://doi.org/10.1016/j.heliyon.2022.e10894
Liu J. et al.: A Fast Network Intrusion Detection System Using Adaptive Synthetic Oversampling and LightGBM. Computers & Security 106, 2021, 102289 [http://doi.org/10.1016/j.cose.2021.102289]. DOI: https://doi.org/10.1016/j.cose.2021.102289
Liu Y., Wu H.: Prediction of Road Traffic Congestion Based on Random Forest. 2017 10th International Symposium on Computational Intelligence and Design (ISCID) 2, 2017, 361–364 [http://doi.org/10.1109/ISCID.2017.216]. DOI: https://doi.org/10.1109/ISCID.2017.216
Lytvyn V. et al.: Identifying Textual Content Based on Thematic Analysis of Similar Texts in Big Data. 2019 IEEE 14th International Conference on Computer Sciences and Information Technologies (CSIT) 2, 2019, 84–91 [http://doi.org/10.1109/STC-CSIT.2019.8929808]. DOI: https://doi.org/10.1109/STC-CSIT.2019.8929808
Mayo M.: A General Approach to Preprocessing Text Data, 2017.
Moosavian A. et al.: Comparison of Two Classifiers; K-Nearest Neighbor and Artificial Neural Network, for Fault Diagnosis on a Main Engine Journal-Bearing. Shock and Vibration 20(2), 2013, 263–272 [http://doi.org/10.3233/SAV-2012-00742]. DOI: https://doi.org/10.1155/2013/360236
Nadhifah D. et al.: Analysis of the Impact of the Increase in Fuel Oil (BBM) on Household Economic Activities. Journal of Contemporary Gender and Child Studies (JCGCS) 1(1), 2022 [https://zia-research.com/index.php/jcgcs]. DOI: https://doi.org/10.61253/jcgcs.v1i1.54
Nazrul Syed S.: Multinomial Naive Bayes Classifier for Text Analysis (Python). Towards Data Science, 2018.
Patel A. et al.: Sentiment Analysis of Customer Feedback and Reviews for Airline Services Using Language Representation Model. Procedia Computer Science 218, 2023, 2459–2467 [http://doi.org/10.1016/j.procs.2023.01.221]. DOI: https://doi.org/10.1016/j.procs.2023.01.221
Rahman R. et al.: Sentiment Analysis on Bengali Movie Reviews Using Multinomial Naive Bayes. 2021 24th International Conference on Computer and Information Technology (ICCIT), 2021, 1–6 [http://doi.org/10.1109/ICCIT54785.2021.9689787]. DOI: https://doi.org/10.1109/ICCIT54785.2021.9689787
Rennie J. D. M. et al.: Tackling the Poor Assumptions of Naive Bayes Text Classifiers, 2003.
Ridho Lubis A. et al.: The Effect of the TF-IDF Algorithm in Times Series in Forecasting Word on Social Media. Indonesian Journal of Electrical Engineering and Computer Science 22(2), 2021, 976 [http://doi.org/10.11591/ijeecs.v22.i2.pp976-984]. DOI: https://doi.org/10.11591/ijeecs.v22.i2.pp976-984
Sahib N. G. et al.: Sentiment Analysis of Social Media Comments in Mauritius. IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC), 2023, 860–865 [http://doi.org/10.1109/CCWC57344.2023.10099291]. DOI: https://doi.org/10.1109/CCWC57344.2023.10099291
Salauddin Khan M. et al.: Comparison of Multiclass Classification Techniques Using Dry Bean Dataset. International Journal of Cognitive Computing in Engineering 4, 2023, 6–20 [http://doi.org/10.1016/j.ijcce.2023.01.002]. DOI: https://doi.org/10.1016/j.ijcce.2023.01.002
Solikah M., Dian N.: The Effectiveness of the Guided Inquiries Learning Model on the Critical Thinking Ability of Students. Jurnal Pijar Mipa 17(2), 2022, 184–191 [http://doi.org/10.29303/jpm.v17i2.3276]. DOI: https://doi.org/10.29303/jpm.v17i2.3276
Surya P. P. et al.: Analysis of User Emotions and Opinion Using Multinomial Naive Bayes Classifier. 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA), 2019, 410–415 [http://doi.org/10.1109/ICECA.2019.8822096]. DOI: https://doi.org/10.1109/ICECA.2019.8822096
Yang J. et al.: Delineation of Urban Growth Boundaries Using a Patch-Based Cellular Automata Model under Multiple Spatial and Socio-Economic Scenarios. Sustainability (Switzerland) 11(21), 2019 [http://doi.org/10.3390/su11216159]. DOI: https://doi.org/10.3390/su11216159
Yu B. et al.: Classification Method for Failure Modes of RC Columns Based on Class-Imbalanced Datasets. Structures 48, 2023, 694–705 [http://doi.org/10.1016/j.istruc.2022.12.063]. DOI: https://doi.org/10.1016/j.istruc.2022.12.063
Zamsuri A. et al.: Classification of Multiple Emotions in Indonesian Text Using The K-Nearest Neighbor Method. Journal of Applied Engineering and Technological Science (JAETS) 4(2), 2023, 1012–1021 [http://doi.org/10.37385/jaets.v4i2.1964]. DOI: https://doi.org/10.37385/jaets.v4i2.1964
Zhai J. et al.: Binary Imbalanced Data Classification Based on Diversity Oversampling by Generative Models. Information Sciences 585, 2022, 313–43 [http://doi.org/10.1016/j.ins.2021.11.058]. DOI: https://doi.org/10.1016/j.ins.2021.11.058
Article Details
Abstract views: 320
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
