COMPREHENSIVE MACHINE LEARNING AND DEEP LEARNING APPROACHES FOR PARKINSON'S DISEASE CLASSIFICATION AND SEVERITY ASSESSMENT

Oumaima Majdoubi

oumaima_majdoubi@um5.ac.ma
Mohammed V University in Rabat, National School of Arts and Crafts, Electronic Systems Sensors and Nanobiotechnology (Morocco)
https://orcid.org/0009-0000-2968-7975

Achraf Benba


Mohammed V University in Rabat, National School of Arts and Crafts, Electronic Systems Sensors and Nanobiotechnology (Morocco)
https://orcid.org/0000-0001-7939-0790

Ahmed Hammouch


Mohammed V University in Rabat, National School of Arts and Crafts, Electronic Systems Sensors and Nanobiotechnology (Morocco)
https://orcid.org/0009-0005-8691-6662

Abstract

In this study, we aimed to adopt a comprehensive approach to categorize and assess the severity of Parkinson's disease by leveraging techniques from both machine learning and deep learning. We thoroughly evaluated the effectiveness of various models, including XGBoost, Random Forest, Multi-Layer Perceptron (MLP), and Recurrent Neural Network (RNN), utilizing classification metrics. We generated detailed reports to facilitate a comprehensive comparative analysis of these models. Notably, XGBoost demonstrated the highest precision at 97.4%. Additionally, we took a step further by developing a Gated Recurrent Unit (GRU) model with the purpose of combining predictions from alternative models. We assessed its ability to predict the severity of the ailment. To quantify the precision levels of the models in disease classification, we calculated severity percentages. Furthermore, we created a Receiver Operating Characteristic (ROC) curve for the GRU model, simplifying the evaluation of its capability to distinguish among various severity levels. This comprehensive approach contributes to a more accurate and detailed understanding of Parkinson's disease severity assessment.


Keywords:

Parkinson's disease, severity assessment, machine learning, XGBoost, Gated Recurrent Unit (GRU), comparative analysis

Abunadi I.: Deep and hybrid learning of MRI diagnosis for early detection of the progression stages in Alzheimer's disease. Connect. Sci. 34, 2022, 2395–2430.
DOI: https://doi.org/10.1080/09540091.2022.2123450   Google Scholar

Balaji E. et al.: Automatic and non-invasive Parkinson's disease diagnosis and severity rating using LSTM network. Applied Soft Computing 108, 2021, 107463.
DOI: https://doi.org/10.1016/j.asoc.2021.107463   Google Scholar

Benba A., Jilbab A., Et Hammouch A.: Analysis of multiple types of voice recordings in cepstral domain using MFCC for discriminating between patients with Parkinson's disease and healthy people. International Journal of Speech Technology 19, 2016, 449-456.
DOI: https://doi.org/10.1007/s10772-016-9338-4   Google Scholar

Bourdenx M. et al.: Identification of distinct pathological signatures induced by patient-derived ?-synuclein structures in nonhuman primates. Science advances 6(20), 2020, eaaz9165.
  Google Scholar

Chaudhuri K. R., Schapira A. H.: Non-motor symptoms of Parkinson's disease: Dopaminergic pathophysiology and treatment. Lancet Neurol. 8, 2009, 464–474.
DOI: https://doi.org/10.1016/S1474-4422(09)70068-7   Google Scholar

El Bakali S., Ouadi H., Saad G.: Day-ahead seasonal solar radiation prediction, combining VMD and STACK algorithms. Clean Energy 7(4) (2023), 911–925.
DOI: https://doi.org/10.1093/ce/zkad025   Google Scholar

Erdogdu Sakar B., Serbes G., Sakar C. O.: Analyzing the effectiveness of vocal features in early telediagnosis of Parkinson's disease. PLoS ONE 12(8), 2017, e0182428.
DOI: https://doi.org/10.1371/journal.pone.0182428   Google Scholar

Gelly G.: Reseaux de neurones recurrents pour le traitement automatique de la parole. Ph.D. thesis, Université Paris Saclay (COmUE), Paris 2017.
  Google Scholar

Gheouany S. et al.: Experimental validation of multi-stage optimal energy management for a smart microgrid system under forecasting uncertainties. Energy Conversion and Management 291, 2023, 117309.
DOI: https://doi.org/10.1016/j.enconman.2023.117309   Google Scholar

Grover S., Bhartia S., Yadav A., Seeja K.: Predicting severity of Parkinson's disease using deep learning. Procedia Comput. Sci. 132, 2018, 1788-1794.
DOI: https://doi.org/10.1016/j.procs.2018.05.154   Google Scholar

Guo R. et al.: Degradation state recognition of piston pump based on ICEEMDAN and XGBoost. Applied Sciences 10(18), 2020, 6593.
DOI: https://doi.org/10.3390/app10186593   Google Scholar

Gupta I. et al.: PCA-RF: an efficient Parkinson's disease prediction model based on random forest classification. 2022, arXiv preprint arXiv:2203.11287.
  Google Scholar

Gürüler H.: A novel diagnosis system for Parkinson's disease using complex-valued artificial neural network with k-means clustering feature weighting method. Neural Computing & Applications 28(7), 2017, 1657-1666.
DOI: https://doi.org/10.1007/s00521-015-2142-2   Google Scholar

Kumar A. et al.: A new Diagnosis using a Parkinson's Disease XGBoost and CNN-based classification model Using ML Techniques. International Conference on Advanced Computing Technologies and Applications – ICACTA. Coimbatore 2022, 1–6.
  Google Scholar

Little M., McSharry P., Hunter E., Spielman J., Ramig L.: Suitability of dysphonia measurements for telemonitoring of Parkinson's disease. Nat. Preced. 2008.
DOI: https://doi.org/10.1038/npre.2008.2298.1   Google Scholar

Majdoubi O., Benba A., Hammouch A.: Classification of Parkinson's disease and other neurological disorders using voice features extraction and reduction techniques. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOS 13(3), 2023, 16-22.
DOI: https://doi.org/10.35784/iapgos.3685   Google Scholar

Poewe W., Seppi K., Tanner C., Halliday G., Brundin P., Volkmann J., Schrag A., Lang A.: Parkinson disease. Nat. Rev. Dis. Prim. 3, 2017, 17013.
DOI: https://doi.org/10.1038/nrdp.2017.13   Google Scholar

Prakash P., Sebban M., Habrard A., Barthelemy J.-C., Roche F., Pichot V.: Détection automatique des apnées du sommeil sur l'ECG nocturne par un apprentissage profond en réseau de neurones récurrents (RNN). Médecine du Sommeil 18(1), 2021, 43-44.
DOI: https://doi.org/10.1016/j.msom.2020.11.077   Google Scholar

Quan C., Ren K., Luo Z., Chen Z., Ling Y.: End-to-end deep learning approach for Parkinson's disease detection from speech signals. Biocybern. Biomed. Eng. 42, 2022, 556-574.
DOI: https://doi.org/10.1016/j.bbe.2022.04.002   Google Scholar

Rehman A. et al.: Parkinson's disease detection using hybrid lstm-gru deep learning model. Electronics 12(13), 2023, 2856.
DOI: https://doi.org/10.3390/electronics12132856   Google Scholar

Sharanyaa S., Renjith P. N., Ramesh K.: An exploration on feature extraction and classification techniques for dysphonic speech disorder in Parkinson's Disease. Inventive Communication and Computational Technologies – ICICCT. Singapore, 2022.
DOI: https://doi.org/10.1007/978-981-16-5529-6_4   Google Scholar

Sriram T. V. S., Rao M. V., Narayana G. V. S., Kaladhar D. S. V. G. K.: Diagnosis of Parkinson disease using machine learning and data mining systems from voice dataset. 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications – FICTA. Berlin, 2014, 151–157.
DOI: https://doi.org/10.1007/978-3-319-11933-5_17   Google Scholar

Tallapureddy G., Radha D.: Analysis of Ensemble of Machine Learning Algorithms for Detection of Parkinson's Disease. International Conference on Applied Artificial Intelligence and Computing – ICAAIC. Salem, 2022, 354–361.
DOI: https://doi.org/10.1109/ICAAIC53929.2022.9793048   Google Scholar

Yasar A., Saritas I., Sahman M., Cinar A.: Classification of Parkinson disease data with artificial neural networks. IOP Conf. Ser. Mater. Sci. Eng. 675, 2019, 012031.
DOI: https://doi.org/10.1088/1757-899X/675/1/012031   Google Scholar

Download


Published
2023-12-20

Cited by

Majdoubi, O., Benba, A., & Hammouch, A. (2023). COMPREHENSIVE MACHINE LEARNING AND DEEP LEARNING APPROACHES FOR PARKINSON’S DISEASE CLASSIFICATION AND SEVERITY ASSESSMENT. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 13(4), 15–20. https://doi.org/10.35784/iapgos.5309

Authors

Oumaima Majdoubi 
oumaima_majdoubi@um5.ac.ma
Mohammed V University in Rabat, National School of Arts and Crafts, Electronic Systems Sensors and Nanobiotechnology Morocco
https://orcid.org/0009-0000-2968-7975

Authors

Achraf Benba 

Mohammed V University in Rabat, National School of Arts and Crafts, Electronic Systems Sensors and Nanobiotechnology Morocco
https://orcid.org/0000-0001-7939-0790

Authors

Ahmed Hammouch 

Mohammed V University in Rabat, National School of Arts and Crafts, Electronic Systems Sensors and Nanobiotechnology Morocco
https://orcid.org/0009-0005-8691-6662

Statistics

Abstract views: 270
PDF downloads: 164