A STANDALONE DC MICROGRID ENERGY MANAGEMENT STRATEGY USING THE BATTERY STATE OF CHARGE
Article Sidebar
Open full text
Issue Vol. 13 No. 3 (2023)
-
MODELING AND ANALYSIS OF SYSTOLIC AND DIASTOLIC BLOOD PRESSURE USING ECG AND PPG SIGNALS
Oleksandr Vasilevskyi, Emanuel Popovici, Volodymyr Sarana5-10
-
SEGMENTATION OF CANCER MASSES ON BREAST ULTRASOUND IMAGES USING MODIFIED U-NET
Ihssane Khallassi, My Hachem El Yousfi Alaoui, Abdelilah Jilbab11-15
-
CLASSIFICATION OF PARKINSON’S DISEASE AND OTHER NEUROLOGICAL DISORDERS USING VOICE FEATURES EXTRACTION AND REDUCTION TECHNIQUES
Oumaima Majdoubi, Achraf Benba, Ahmed Hammouch16-22
-
DEVELOPMENT OF THE POWER SUPPLY AND CONTROL SYSTEM FOR THE HEMODIALYSIS MACHINE
Volodymyr Yaskiv, Anna Yaskiv23-28
-
VALIDATION OF A THREE-DIMENSIONAL HEAD PHANTOM FOR IMAGING DATA
Jolanta Podolszańska29-32
-
OVERLOAD AND TRAFFIC MANAGEMENT OF MESSAGE SOURCES WITH DIFFERENT PRIORITY OF SERVICE
Valerii Kozlovskyi, Valerii Kozlovskyi, Andrii Toroshanko, Oleksandr Toroshanko, Natalia Yakumchuk33-36
-
RESEARCH ON CALCULATION OPTIMIZATION METHODS USED IN COMPUTER GAMES DEVELOPMENT
Natali Fedotova, Maksim Protsenko, Iryna Baranova, Svitlana Vashchenko, Yaroslava Dehtiarenko37-42
-
ANALYSIS OF THE QUALITY OF PRINTED PLA SAMPLES USING VARIOUS 3D PRINTERS AND PRINT PREPARATION PROGRAMS
Karolina Tomczyk, Albert Raczkiewicz, Magdalena Paśnikowska-Łukaszuk43-46
-
SEGMENTATION OF MULTIGRADATION IMAGES BASED ON SPATIAL CONNECTIVITY FEATURES
Leonid Timchenko, Natalia Kokriatskaya, Volodymyr Tverdomed, Oleksandr Stetsenko, Valentina Kaplun, Oleg K. Kolesnytskyj, Oleksandr Reshetnik; Saule Smailova; Ulzhalgas Zhunissova47-50
-
IMPLEMENTATION OF COMPUTER PROCESSING OF RELAXATION PROCESSES INVESTIGATION DATA USING EXTENDED EXPONENTIAL FUNCTION
Andrey Lozovskyi, Alexander Lyashkov, Igor Gomilko, Alexander Tonkoshkur51-55
-
URBAN TRAFFIC CRASH ANALYSIS USING DEEP LEARNING TECHNIQUES
Mummaneni Sobhana, Nihitha Vemulapalli, Gnana Siva Sai Venkatesh Mendu, Naga Deepika Ginjupalli, Pragathi Dodda, Rayanoothala Bala Venkata Subramanyam56-63
-
UNBALANCED MULTICLASS CLASSIFICATION WITH ADAPTIVE SYNTHETIC MULTINOMIAL NAIVE BAYES APPROACH
Fatkhurokhman Fauzi, . Ismatullah, Indah Manfaati Nur64-70
-
COMPARISON OF THE EFFECTIVENESS OF TIME SERIES ANALYSIS METHODS: SMA, WMA, EMA, EWMA, AND KALMAN FILTER FOR DATA ANALYSIS
Volodymyr Lotysh, Larysa Gumeniuk, Pavlo Humeniuk71-74
-
A STANDALONE DC MICROGRID ENERGY MANAGEMENT STRATEGY USING THE BATTERY STATE OF CHARGE
Elvin Yusubov, Lala Bekirova75-78
-
MACROMODELING OF LOCAL POWER SUPPLY SYSTEM BALANCE FORECASTING USING FRACTAL PROPERTIES OF LOAD AND GENERATION SCHEDULES
Daniyar Jarykbassov, Petr Lezhniuk, Iryna Hunko, Vladyslav Lysyi, Lyubov Dobrovolska79-82
-
PV PANEL COOLING USING STACK EFFECT
Kudith Nageswara Rao, Ganesamoorthy Rajkuma83-85
-
A NEW AUTOMATIC INTELLIGENCE-BASED SOLAR LOAD CONTROL SYSTEM
Kudith Nageswara Rao, Ganesamoorthy Rajkuma86-89
-
OPTIMIZATION OF PARTS CUTTING PROCESS PARAMETERS WORKING IN CONDITIONS OF CYCLIC LOADS
Kateryna Barandych, Sergii Vysloukh, Grygoriy Tymchyk, Oleksandr Murashchenko, Saule Smailova, Saule Kumargazhanova90-93
-
RESEARCH THE EFFECT OF THE FRACTIONAL NUMBER SLOTS OF POLE ON WIND TURBINE GENERATION USING THE ENHANCED SPOTTED HYENA OPTIMIZATION ALGORITHM
Ibrahim M. Aladwan, Hasan Abdelrazzaq AL Dabbas, Ayman. M. Maqableh, Sayel M. Fayyad, Oleksandr Miroshnyk, Taras Shchur, Vadym Ptashnyk94-100
-
NEW SURFACE REFLECTANCE MODEL WITH THE COMBINATION OF TWO CUBIC FUNCTIONS USAGE
Oleksandr Romanyuk, Yevhen Zavalniuk, Sergii Pavlov, Roman Chekhmestruk, Zlata Bondarenko, Tetiana Koval, Aliya Kalizhanova, Aigul Iskakova101-106
-
THE CONCEPT OF ELECTRONIC CONTROL UNIT FOR COMBUSTION ENGINE IN HYBRID TANDEM
Tomasz Zyska, Marcin Powązka, Bartłomiej Forysiuk107-110
-
TESLA SWITCH OF 4 BATTERIES BASED ON THE ARDUINO UNO BOARD
Mykola Polishchuk, Serhii Grinyuk, Serhii Kostiuchko, Anatolii Tkachuk, Pavlo Savaryn111-116
-
REMOTE SOTA ALGORITHM FOR NB-IOT WIRELESS SENSORS – IMPLEMENTATION AND RESULTS
Piotr Szydłowski, Karol Zaręba117-120
-
DEVELOPMENT OF A SOFTWARE SYSTEM FOR PREDICTING EMPLOYEE RATINGS
Gulnar Balakayeva, Dauren Darkenbayev, Mukhit Zhanuzakov121-124
-
ENGINEERING AND TECHNICAL ASSESSMENT OF THE COMPETITIVENESS OF UKRAINIAN MECHANICAL ENGINEERING ENTERPRISES BASED ON THE APPLICATION OF REGRESSION MODELS
Anna Vitiuk, Leonid Polishchuk, Nataliia B. Savina, Oksana O. Adler, Gulzhan Kashaganova, Saule Kumargazhanova125-128
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
This article introduces an enhanced energy management strategy that employs the state of charge (SoC) of batteries in standalone DC microgrids with photovoltaic (PV) modules. Efficient energy management is crucial to ensure uninterrupted power supply to the load units in microgrids. To address the challenges posed by external factors such as temperature fluctuations and variations in solar irradiance, energy storage systems are deployed to compensate for the negative effects of the external factors on the output power of PV modules. The proposed approach takes into account various parameters of the microgrid elements, including the available power from the sources, demand power, and the SoC of batteries, in order to develop an efficient energy control mechanism with load-shedding capability. By considering these parameters, the strategy aims to optimize the utilization of available resources while ensuring a reliable power supply to the connected loads. The SoC of the batteries plays a critical role in determining optimal charging and discharging profiles, enabling effective energy management within the microgrid. To evaluate the effectiveness of the proposed approach, an algorithm is designed and simulations are conducted. The proposed algorithm utilizes a hybrid approach by combining power and SoC-based methods for efficient control. Through analysis of the simulation results, it is found that the presented approach is capable of delivering the intended load power while increasing the life cycle of the batteries with the pre-defined SoC levels.
Keywords:
References
Ashok K. A., Amutha N. P.: A Comprehensive Review of DC Microgrid in Market Segments and Control Technique. Heliyon, 2022, e11694 [http://doi.org/10.1016/j.heliyon.2022.e11694]. DOI: https://doi.org/10.1016/j.heliyon.2022.e11694
Caldognetto T. et al.: Power-Based Control of Low-Voltage Microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics 3(4), 2015, 1056–1066 [http://doi.org/10.1109/jestpe.2015.2413361]. DOI: https://doi.org/10.1109/JESTPE.2015.2413361
Chang W. Y.: The State of Charge Estimating Methods for Battery: A Review. ISRN Applied Mathematics 2013, 1–7 [http://doi.org/10.1155/2013/953792]. DOI: https://doi.org/10.1155/2013/953792
Darwish M. et al.: Review of Battery Management Systems. IEEE International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), 2021 [http://doi.org/10.1109/iceccme52200.2021.9590884]. DOI: https://doi.org/10.1109/ICECCME52200.2021.9590884
Fanoro M. et al.: A Review of the Impact of Battery Degradation on Energy Management Systems With a Special Emphasis on Electric Vehicles. Energies 15(16), 2022, 5889 [http://doi.org/10.3390/en15165889]. DOI: https://doi.org/10.3390/en15165889
Garg A. et al.: Implementation of Energy Management Scenarios in a DC Microgrid Using DC Bus Signaling. IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE), 2020 [http://doi.org/10.1109/pesgre45664.2020.9070484]. DOI: https://doi.org/10.1109/PESGRE45664.2020.9070484
Giroletti F., Scattolini A.: A Hybrid Frequency/Power Based Method for Industrial Load Shedding. International Journal of Electrical Power & Energy Systems 35(1), 2012, 194–200 [http://doi.org/10.1016/j.ijepes.2011.10.013]. DOI: https://doi.org/10.1016/j.ijepes.2011.10.013
Ibrahim M. S. et al.: Economic Energy Dispatch of Microgrids Using Computational Intelligence. Renewable Energy Microgeneration Systems, Elsevier, 2021, 229–245 [http://doi.org/10.1016/b978-0-12-821726-9.00010-2]. DOI: https://doi.org/10.1016/B978-0-12-821726-9.00010-2
Jayasena K. N. C. et al.: SoC Based Multi-Mode Battery Energy Management System for DC Microgrids. IEEE Moratuwa Engineering Research Conference (MERCon), 2019 [http://doi.org/10.1109/mercon.2019.8818765]. DOI: https://doi.org/10.1109/MERCon.2019.8818765
Kandari R. et al.: Chapter 4 – DC microgrid. Microgrids Modeling, Control, and Applications. Elsevier, 2022, 91–139 [http://doi.org/10.1016/b978-0-323-85463-4.00007-1]. DOI: https://doi.org/10.1016/B978-0-323-85463-4.00007-1
Lawder M. T. et al.: Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications. Proceedings of the IEEE 102(6), 2014, 1014–1030 [http://doi.org/10.1109/jproc.2014.2317451]. DOI: https://doi.org/10.1109/JPROC.2014.2317451
Li F. et al.: Active DC bus signalling control method for coordinating multiple energy storage devices in DC microgrid. IEEE Second International Conference on DC Microgrids (ICDCM), 2017 [http://doi.org/10.1109/icdcm.2017.8001048]. DOI: https://doi.org/10.1109/ICDCM.2017.8001048
Li X. et al.: DC Bus Signaling-Based Coordination Through Masked Sensing for DC Microgrid. 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), IEEE, 2020 [http://doi.org/10.1109/ipemc-ecceasia48364.2020.9368065]. DOI: https://doi.org/10.1109/IPEMC-ECCEAsia48364.2020.9368065
Li X. et al.: A novel control strategy based on DC bus signalling for DC micro-grid with photovoltaic and battery energy storage. China International Conference on Electricity Distribution (CICED), IEEE, 2016 [http://doi.org/10.1109/ciced.2016.7576132]. DOI: https://doi.org/10.1109/CICED.2016.7576132
Liu S. et al.: A Multivariable Hysteresis-Based DC Bus Signaling Control for DC Microgrid With Enhanced Reliability. Third International Conference on DC Microgrids (ICDCM), IEEE, 2019 [http://doi.org/10.1109/icdcm45535.2019.9232907]. DOI: https://doi.org/10.1109/ICDCM45535.2019.9232907
Ma T. et al.: A Control Strategy of DC Building Microgrid Connected to the Neighborhood and AC Power Network. Buildings 7(4), 2017, 42 [http://doi.org/10.3390/buildings7020042]. DOI: https://doi.org/10.3390/buildings7020042
Mitra S. K., Srinivas B. K.: A SOC Based Adaptive Energy Management System for Hybrid Energy Storage System Integration to Grid. 12th Energy Conversion Congress & Exposition – Asia (ECCE-Asia), IEEE, 2021 [http://doi.org/10.1109/ecce-asia49820.2021.9479107]. DOI: https://doi.org/10.1109/ECCE-Asia49820.2021.9479107
Tenti P., Caldognetto T.: Chapter 4 – Master/Slave Power-Based Control of Low-Voltage Microgrids. Microgrid Advanced Control Methods and Renewable Energy System Integration, Elsevier, 2017, 101–135 [http://doi.org/10.1016/b978-0-08-101753-1.00004-8]. DOI: https://doi.org/10.1016/B978-0-08-101753-1.00004-8
Wu H. et al.: Dynamic Economic Dispatch of a Microgrid: Mathematical Models and Solution Algorithm. International Journal of Electrical Power & Energy Systems 63, 2014, 336–346 [http://doi.org/10.1016/j.ijepes.2014.06.002]. DOI: https://doi.org/10.1016/j.ijepes.2014.06.002
Yang Y. et al.: Modelling and Optimal Energy Management for Battery Energy Storage Systems in Renewable Energy Systems: A Review. Renewable and Sustainable Energy Reviews 167, 2022, 112671 [http://doi.org/10.1016/j.rser.2022.112671]. DOI: https://doi.org/10.1016/j.rser.2022.112671
Yusubov E., Bekirova L.: Adaptive Metaheuristic Moth-Flame Optimized Droop Control Method for DC Microgrids. International Conference Automatics and Informatics (ICAI), IEEE, 2022 [http://doi.org/10.1109/icai55857.2022.9960119]. DOI: https://doi.org/10.1109/ICAI55857.2022.9960119
Article Details
Abstract views: 315
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
