RESEARCH THE EFFECT OF THE FRACTIONAL NUMBER SLOTS OF POLE ON WIND TURBINE GENERATION USING THE ENHANCED SPOTTED HYENA OPTIMIZATION ALGORITHM

Ibrahim M. Aladwan

Ibrahim.aladwan@bau.edu.jo
Al-Balqa Applied University, Department of Mechatronics Engineering (Jordan)
http://orcid.org/0000-0002-7305-2413

Hasan Abdelrazzaq AL Dabbas


Philadelphia University, Department of Mechanical Engineering (Jordan)
http://orcid.org/0000-0003-1301-4279

Ayman. M. Maqableh


Luminus Technical University College, Electomechanical Engineering Department (Jordan)
http://orcid.org/0000-0003-1301-4279

Sayel M. Fayyad


Al-Balqa Applied University, Department of Mechanical Engineering (Jordan)
http://orcid.org/0000-0002-7305-2413

Oleksandr Miroshnyk


State Biotechnological University, Department of Electricity Supply and Energy Management (Ukraine)
http://orcid.org/0000-0002-6144-7573

Taras Shchur


Cyclone Manufacturing Inc, Mississauga (Canada)
http://orcid.org/0000-0003-0205-032X

Vadym Ptashnyk


Lviv National Environmental University, Department of Information Systems and Technologies (Ukraine)
http://orcid.org/0000-0002-1018-1138

Abstract

The design of machines with permanent magnets is actively developing day by day and is often used in wind energy. The main advantages of such variable speed drives are high efficiency, high power density and torque density. When designing a wind generator with two rotors and permanent magnets, it is necessary to solve such a problem as the correct choice of the number of poles and slots to increase efficiency and minimize the cost of the machine. In this work, an improved spotted hyena optimization algorithm is used to obtain the optimal combination of slots and poles. This optimization algorithm makes it possible to obtain the number of fractional slots per pole and evaluate the operating efficiency of a wind generator with a double rotor and ferrite magnets. At the first stage of machine design, various combinations of slots are installed. Next, the optimal combination is selected from various slot-pole combinations, taking into account the Enhanced Spotted Hyena Optimization (ESHO) algorithm, in which a multi-objective function is configured. Accordingly, the multi-objectives are the integration of reverse electromotive force, output torque, gear torque, flux linkage, torque ripple along with losses. Analysis of the results obtained shows that the proposed algorithm for determining the optimal slot combination is more efficient than other slot combinations. It has also been found that the choice of slot and pole combination is critical to the efficient operation of permanent magnet machines.


Keywords:

wind turbine generation, optimal slot, pole, ESHO algorithm

Abdelmoula R., Benhadj N., Chaieb M., Neji R.: Finite element comparative analysis software of a radial flux synchronous motor for electric vehicle drive. Proceedings of the International Conference on Recent Advances in Electrical Systems, 2016, 62–67.
  Google Scholar

Al_Issa H. A., Qawaqzeh M., Khasawneh A., Buinyi R., Bezruchko V., Miroshnyk O.: Correct Cross-Section of Cable Screen in a Medium Voltage Collector Networkwith Isolated Neutral of a Wind Power Plant. Energies 14, 2021, 3026 [http://doi.org/10.3390/en14113026].
DOI: https://doi.org/10.3390/en14113026   Google Scholar

Ambekar R., Ambekar S.: Design investigation for continual torque operative performance of PMSM for vehicle. Sādhanā 45, 2020, 120 [http://doi.org/10.1007/s12046-020-01360-y].
DOI: https://doi.org/10.1007/s12046-020-01360-y   Google Scholar

Andrade K. M., Santos H. E., Wellington M. V., Almeida T. E., Paula G. T.: PeMSyn – a free matlab-femm based educational tool to assist the design and performance assessment of synchronous machines. Eletron. Poten., Fortaleza 25(2), 2020, 163–172 [http://doi.org/10.18618/REP.2020.2.0009].
DOI: https://doi.org/10.18618/REP.2020.2.0009   Google Scholar

Chakir A., Tabaa M., Moutaouakkil F., Medromi H., Alami K.: Control System for a Permanent Magnet Wind Turbine Using Particle Swarm Optimization and Proportional Integral Controller. International Review of Automatic Control (IREACO) 13(5), 2020 [http://doi.org/10.15866/ireaco.v13i5.18482].
DOI: https://doi.org/10.15866/ireaco.v13i5.18482   Google Scholar

Chen X., Wang J.: Magnetomotive force harmonic reduction techniques for fractional-slot non-overlapping winding configurations in permanent-magnet synchronous machines. Chinese Journal of Electrical Engineering 3(2), 2017, 103–113 [http://doi.org/10.23919/CJEE.2017.8048416].
DOI: https://doi.org/10.23919/CJEE.2017.8048416   Google Scholar

Demir Y., Yolacan E., El-Refaie A., Aydin M.: Investigation of Different Winding Configurations and Displacements of a Nine-Phase Permanent-Magnet-Synchronous Motor with Unbalanced AC Winding Structure. IEEE Transactions on Industry Applications 55(4), 2018, 3660–3670 [http://doi.org/10.1109/TIA.2019.2913156].
DOI: https://doi.org/10.1109/TIA.2019.2913156   Google Scholar

Dutta R., Pouramin A., Rahman M.: A novel rotor topology for high-performance fractional slot concentrated winding interior machine. IEEE Transactions on Energy Conversion 36(2), 2020, 658–670 [http://doi.org/10.1109/TEC.2020.3030302].
DOI: https://doi.org/10.1109/TEC.2020.3030302   Google Scholar

Edhah S., Alsawalhi J., Al-durra A.: Multi objective optimization design of fractional slot concentrated winding synchronous machines. IEEE Access 7, 2019, 162874–162882 [http://doi.org/10.1109/ACCESS.2019.2951023].
DOI: https://doi.org/10.1109/ACCESS.2019.2951023   Google Scholar

Gandzha S., Sogrin A., Kiessh I.: The comparative analysis of electric machines with integer and fractional number of slots per pole and phase. Procedia Engineering 129, 2015, 408–414 [http://doi.org/10.1016/j.proeng.2015.12.137].
DOI: https://doi.org/10.1016/j.proeng.2015.12.137   Google Scholar

Hemeida A., Taha M., Abdallh A., Vansompel H., Dupre L., Sergeant P.: Applicability of fractional slot axial flux synchronous machines in the field weakening region. IEEE Transactions on Energy Conversion 32(1), 2016, 111–121 [http://doi.org/10.1109/TEC.2016.2614011].
DOI: https://doi.org/10.1109/TEC.2016.2614011   Google Scholar

Iegorov O., Iegorova O., Miroshnyk O., Savchenko O.: Improving the accuracy of determining the parameters of induction motors in transient starting modes. Energetika 66(1), 2020, 15–23 [http://doi.org/10.6001/energetika.v66i1.4295].
DOI: https://doi.org/10.6001/energetika.v66i1.4295   Google Scholar

Ismagilov F., Vavilov V., Yamalov I., Karimov R.: Fault-Tolerant Electric Motors with Permanent Magnets and Electromagnetic Shunting. International Review of Aerospace Engineering (IREASE) 13(2), 2020, 51–58 [http://doi.org/10.15866/irease.v13i2.17751].
DOI: https://doi.org/10.15866/irease.v13i2.17751   Google Scholar

Kolsi H., Ben Hadj N., Chaieb M., Neji R.: Design of Permanent Magnet Synchronous Motor by Means of Power Density Optimization For e-Vehicle Applications. International Review on Modelling and Simulations (IREMOS) 15(3), 2022 [http://doi.org/10.15866/iremos.v15i3.21739].
DOI: https://doi.org/10.15866/iremos.v15i3.21739   Google Scholar

Li G., Ren B., Zhu Z.: Design guidelines for fractional slot multi-phase modular machines. IET Electric Power Applications 11(6), 2017, 1023–1031 [http://doi.org/10.1049/iet-epa.2016.0616].
DOI: https://doi.org/10.1049/iet-epa.2016.0616   Google Scholar

Li X., Zhu Z., Thomas A., Wu Z., Wu X.: Novel modular fractional slot machines with redundant teeth. IEEE Transactions on Magnetics 55(9), 2019, 1–10 [http://doi.org/10.1109/TMAG.2019.2918190].
DOI: https://doi.org/10.1109/TMAG.2019.2918190   Google Scholar

Liu Y., Zhu Z.: Electromagnetic performance comparison of 18-slot/26-pole and 18-slot/10-pole fractional slot surface-mounted machines. 20th International Conference on Electrical Machines and Systems (ICEMS) 2017, 11–14 [http://doi.org/10.1109/ICEMS.2017.8056383].
DOI: https://doi.org/10.1109/ICEMS.2017.8056383   Google Scholar

Liu Y., Zhu Z.: Influence of gear ratio on the performance of fractional slot concentrated winding machines. IEEE Transactions on Industrial Electronics 66(10), 2019, 7593–7602 [http://doi.org/10.1109/TIE.2018.2885728].
DOI: https://doi.org/10.1109/TIE.2018.2885728   Google Scholar

Lounthavong V., Sriwannarat W., Seangwong P., Siritaratiwat A., Khunkitti P.: Optimal Stator Design to Improve the Output Voltage of the Novel Three-Phase Doubly Salient Permanent Magnet Generator. International Journal on Energy Conversion (IRECON) 8(4), 2020, 118–125 [http://doi.org/10.15866/irecon.v8i4.19302].
DOI: https://doi.org/10.15866/irecon.v8i4.19302   Google Scholar

Makhad M., Zazi K., Zazi M., Loulijat A.: Smooth Super Twisting Sliding Mode Control for Permanent Magnet Synchronous Generator Based Wind Energy Conversion System. International Journal on Energy Conversion (IRECON) 8(5), 2020, 171–180 [http://doi.org/10.15866/irecon.v8i5.19362].
DOI: https://doi.org/10.15866/irecon.v8i5.19362   Google Scholar

Murali N., Mini V. P., Ushakumari S.: Modified V-Shaped Interior Permanent Magnet Synchronous Motor Drive for Electric Vehicle. International Review on Modelling and Simulations (IREMOS) 14(6), 2021 [http://doi.org/10.15866/iremos.v14i6.20884].
DOI: https://doi.org/10.15866/iremos.v14i6.20884   Google Scholar

Nur T., Mawar S.: Improvement of Cogging Torque Reduction by Combining the Magnet Edge Shaping and Dummy Slot in Stator Core of Fractional Slot Number in Permanent Magnet Machine. IOP Conference Series Materials Science and Engineering 807(1), 2020, 012023, 29–30 [http://doi.org/10.1088/1757-899X/807/1/012023].
DOI: https://doi.org/10.1088/1757-899X/807/1/012023   Google Scholar

Ouiddir F., Benouzza N., Gherabi Z.: Stator Current Square Analysis to Discriminate Between Eccentricity and Demagnetization Faults in PMSMs. International Review of Electrical Engineering (IREE) 17(1), 2022, 11–19 [http://doi.org/10.15866/iree.v17i1.20950].
DOI: https://doi.org/10.15866/iree.v17i1.20950   Google Scholar

Pazyi V., Miroshnyk O., Moroz O., Trunova I., Savchenko O, Halko S.: Analysis of technical condition diagnostics problems and monitoring of distribution electrical network modes from smart grid platform position. IEEE KhPI Week on Advanced Technology (KhPIWeek), 2020, 20168725, 57–60 [http://doi.org/10.1109/KhPIWeek51551.2020.9250080].
DOI: https://doi.org/10.1109/KhPIWeek51551.2020.9250080   Google Scholar

Peng B., Wang X., Zhao W., Ren J.: Study on shaft voltage in fractional slot machine with different pole and slot number combinations. IEEE Transactions on Magnetics 55(6), 2019, 1–5 [http://doi.org/10.1109/TMAG.2019.2898566].
DOI: https://doi.org/10.1109/TMAG.2019.2898566   Google Scholar

Pezhman J., Taghipour S., Khoshtarash J.: Expansion of the feasible slot pole combinations in the fractional slot PM machines by applying three-slot pitch coils. IEEE Transactions on Energy Conversion 34(2), 2018, 993–999 [http://doi.org/10.1109/TEC.2016.2614011].
DOI: https://doi.org/10.1109/TEC.2018.2871889   Google Scholar

Qawaqzeh M., Szafraniec A., Halko S., Miroshnyk O., Zharkov A.: Modelling of a household electricity supply system based on a wind power plant. Przegląd Elektrotechniczny 96, 2020, 36–40 [http://doi.org/10.15199/48.2020.11.08].
DOI: https://doi.org/10.15199/48.2020.11.08   Google Scholar

Qawaqzeh M., Zaitsev R., Miroshnyk O., Kirichenko M., Danylchenko D., Zaitseva L.: High-voltage DC converter for solar power station. International journal of power electronics and drive system 11(4), 2020, 2135–2144 [http://doi.org/10.11591/ijpeds.v11.i4.pp2135-2144].
DOI: https://doi.org/10.11591/ijpeds.v11.i4.pp2135-2144   Google Scholar

Røkke A., Nilssen R.: Analytical calculation of yoke flux patterns in fractional-slot machines. IEEE Transactions on Magnetics 53(4), 2017, 1–9 [http://doi.org/10.1109/TMAG.2016.2623583].
DOI: https://doi.org/10.1109/TMAG.2016.2623583   Google Scholar

Savchenko O. A., Miroshnyk O. O., Dyubko S., Shchur T., Komada P., Mussabekov K.: Justification of ice melting capacity on 6-10 kV OPL distributing power networks based on fuzzy modeling. Przeglad Elektrotechniczny 95(5), 2019, 106–109.
DOI: https://doi.org/10.15199/48.2019.05.26   Google Scholar

Shen J., Wang C., Miao D., Jin M., Shi D., Wang Y.: Analysis and optimization of a modular stator core with segmental teeth and solid back iron for pm electric machines. IEEE International Electric Machines & Drives Conference (IEMDC), 2011, 1270–1275 [http://doi.org/10.1109/IEMDC.2011.5994787].
DOI: https://doi.org/10.1109/IEMDC.2011.5994787   Google Scholar

Szafraniec A., Halko S., Miroshnyk O., Figura R., Zharkov A., Vershkov O.: Magnetic field parameters mathematical modelling of windelectric heater. Przeglad elektrotechniczny 97(8), 2021, 36–41.
DOI: https://doi.org/10.15199/48.2021.08.07   Google Scholar

Tahanian H., Aliahmadi M., Faiz J.: Ferrite Permanent Magnets in Electrical Machines: Opportunities and Challenges of a Non-Rare-Earth Alternative. IEEE Transactions on Magnetics 56(3), 2020, 1–20 [http://doi.org/900120.10.1109/TMAG.2019.2957468].
DOI: https://doi.org/10.1109/TMAG.2019.2957468   Google Scholar

Tessarolo A., Mezzarobba M., Barbini N.: Improved four-layer winding design for a 12-slot 10-pole machine using unequal tooth coils. 42nd Annual Conference of the IEEE Industrial Electronics Society – IECON 2016, 1686–1691 [http://doi.org/10.1109/IECON.2016.7793399].
DOI: https://doi.org/10.1109/IECON.2016.7793399   Google Scholar

Torreggiani A., Bianchini C., Davoli M., Bellini A.: Design for Reliability: The Case of Fractional-Slot Surface Permanent-Magnet Machines. Energies 12, 2019, 1691 [http://doi.org/10.3390/en12091691].
DOI: https://doi.org/10.3390/en12091691   Google Scholar

Torrent M., Perat J. I., Jiménez J. A.: Permanent Magnet Synchronous Motor with Different Rotor Structures for Traction Motor in High Speed Trains. Energies 11, 2018, 1549 [http://doi.org/10.3390/en11061549].
DOI: https://doi.org/10.3390/en11061549   Google Scholar

Trunova I., Miroshnyk O., Savchenko O., Moroz O.: The perfection of motivational model for improvement of power supply quality with using the one-way analysis of variance. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 6, 2019, 163–168 [http://doi.org/10.29202/nvngu/2019-6/24].
DOI: https://doi.org/10.29202/nvngu/2019-6/24   Google Scholar

Tymchuk S., Miroshnyk O.: Assess electricity quality by means of fuzzy generalized index. Easternt-European Journal of enterprise technologies 3/4(75), 2015, 26–31 [http://doi.org/10.15587/1729-4061.2015.42484].
DOI: https://doi.org/10.15587/1729-4061.2015.42484   Google Scholar

Wang Q., Li Y., Deng G., Zhang H., Li Y., Xu J., Wang X.: Optimization Study of Poles-Slots Combination of Large Capacity Offshore HTS Wind Generator Based on Ansys Maxwel. Journal of Physics Conference Series 1754, 2021, 012042 [http://doi.org/10.1088/1742-6596/1754/1/012042].
DOI: https://doi.org/10.1088/1742-6596/1754/1/012042   Google Scholar

Zhu Z., Wu D., Ge X.: Investigation of voltage distortion in fractional slot interior machines having different slot and pole number combinations. IEEE Transactions on Energy Conversion 31(3), 2015, 1192–1201 [http://doi.org/10.1109/TEC.2016.2553140].
DOI: https://doi.org/10.1109/TEC.2016.2553140   Google Scholar

Zou T., Qu R., Li D., Jiang D.: Synthesis of fractional-slot vernier permanent magnet machines. International Conference on Electrical Machines (ICEM) 2016, 911–917 [http://doi.org/10.1109/ICELMACH.2016.7732634].
DOI: https://doi.org/10.1109/ICELMACH.2016.7732634   Google Scholar

Download


Published
2023-09-30

Cited by

Aladwan, I. M., Abdelrazzaq AL Dabbas, H., Maqableh, A. M., Fayyad, S. M., Miroshnyk, O., Shchur, T., & Ptashnyk, V. (2023). RESEARCH THE EFFECT OF THE FRACTIONAL NUMBER SLOTS OF POLE ON WIND TURBINE GENERATION USING THE ENHANCED SPOTTED HYENA OPTIMIZATION ALGORITHM. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 13(3), 94–100. https://doi.org/10.35784/iapgos.5328

Authors

Ibrahim M. Aladwan 
Ibrahim.aladwan@bau.edu.jo
Al-Balqa Applied University, Department of Mechatronics Engineering Jordan
http://orcid.org/0000-0002-7305-2413

Authors

Hasan Abdelrazzaq AL Dabbas 

Philadelphia University, Department of Mechanical Engineering Jordan
http://orcid.org/0000-0003-1301-4279

Authors

Ayman. M. Maqableh 

Luminus Technical University College, Electomechanical Engineering Department Jordan
http://orcid.org/0000-0003-1301-4279

Authors

Sayel M. Fayyad 

Al-Balqa Applied University, Department of Mechanical Engineering Jordan
http://orcid.org/0000-0002-7305-2413

Authors

Oleksandr Miroshnyk 

State Biotechnological University, Department of Electricity Supply and Energy Management Ukraine
http://orcid.org/0000-0002-6144-7573

Authors

Taras Shchur 

Cyclone Manufacturing Inc, Mississauga Canada
http://orcid.org/0000-0003-0205-032X

Authors

Vadym Ptashnyk 

Lviv National Environmental University, Department of Information Systems and Technologies Ukraine
http://orcid.org/0000-0002-1018-1138

Statistics

Abstract views: 153
PDF downloads: 114


Most read articles by the same author(s)