URBAN TRAFFIC CRASH ANALYSIS USING DEEP LEARNING TECHNIQUES
Article Sidebar
Open full text
Issue Vol. 13 No. 3 (2023)
-
MODELING AND ANALYSIS OF SYSTOLIC AND DIASTOLIC BLOOD PRESSURE USING ECG AND PPG SIGNALS
Oleksandr Vasilevskyi, Emanuel Popovici, Volodymyr Sarana5-10
-
SEGMENTATION OF CANCER MASSES ON BREAST ULTRASOUND IMAGES USING MODIFIED U-NET
Ihssane Khallassi, My Hachem El Yousfi Alaoui, Abdelilah Jilbab11-15
-
CLASSIFICATION OF PARKINSON’S DISEASE AND OTHER NEUROLOGICAL DISORDERS USING VOICE FEATURES EXTRACTION AND REDUCTION TECHNIQUES
Oumaima Majdoubi, Achraf Benba, Ahmed Hammouch16-22
-
DEVELOPMENT OF THE POWER SUPPLY AND CONTROL SYSTEM FOR THE HEMODIALYSIS MACHINE
Volodymyr Yaskiv, Anna Yaskiv23-28
-
VALIDATION OF A THREE-DIMENSIONAL HEAD PHANTOM FOR IMAGING DATA
Jolanta Podolszańska29-32
-
OVERLOAD AND TRAFFIC MANAGEMENT OF MESSAGE SOURCES WITH DIFFERENT PRIORITY OF SERVICE
Valerii Kozlovskyi, Valerii Kozlovskyi, Andrii Toroshanko, Oleksandr Toroshanko, Natalia Yakumchuk33-36
-
RESEARCH ON CALCULATION OPTIMIZATION METHODS USED IN COMPUTER GAMES DEVELOPMENT
Natali Fedotova, Maksim Protsenko, Iryna Baranova, Svitlana Vashchenko, Yaroslava Dehtiarenko37-42
-
ANALYSIS OF THE QUALITY OF PRINTED PLA SAMPLES USING VARIOUS 3D PRINTERS AND PRINT PREPARATION PROGRAMS
Karolina Tomczyk, Albert Raczkiewicz, Magdalena Paśnikowska-Łukaszuk43-46
-
SEGMENTATION OF MULTIGRADATION IMAGES BASED ON SPATIAL CONNECTIVITY FEATURES
Leonid Timchenko, Natalia Kokriatskaya, Volodymyr Tverdomed, Oleksandr Stetsenko, Valentina Kaplun, Oleg K. Kolesnytskyj, Oleksandr Reshetnik; Saule Smailova; Ulzhalgas Zhunissova47-50
-
IMPLEMENTATION OF COMPUTER PROCESSING OF RELAXATION PROCESSES INVESTIGATION DATA USING EXTENDED EXPONENTIAL FUNCTION
Andrey Lozovskyi, Alexander Lyashkov, Igor Gomilko, Alexander Tonkoshkur51-55
-
URBAN TRAFFIC CRASH ANALYSIS USING DEEP LEARNING TECHNIQUES
Mummaneni Sobhana, Nihitha Vemulapalli, Gnana Siva Sai Venkatesh Mendu, Naga Deepika Ginjupalli, Pragathi Dodda, Rayanoothala Bala Venkata Subramanyam56-63
-
UNBALANCED MULTICLASS CLASSIFICATION WITH ADAPTIVE SYNTHETIC MULTINOMIAL NAIVE BAYES APPROACH
Fatkhurokhman Fauzi, . Ismatullah, Indah Manfaati Nur64-70
-
COMPARISON OF THE EFFECTIVENESS OF TIME SERIES ANALYSIS METHODS: SMA, WMA, EMA, EWMA, AND KALMAN FILTER FOR DATA ANALYSIS
Volodymyr Lotysh, Larysa Gumeniuk, Pavlo Humeniuk71-74
-
A STANDALONE DC MICROGRID ENERGY MANAGEMENT STRATEGY USING THE BATTERY STATE OF CHARGE
Elvin Yusubov, Lala Bekirova75-78
-
MACROMODELING OF LOCAL POWER SUPPLY SYSTEM BALANCE FORECASTING USING FRACTAL PROPERTIES OF LOAD AND GENERATION SCHEDULES
Daniyar Jarykbassov, Petr Lezhniuk, Iryna Hunko, Vladyslav Lysyi, Lyubov Dobrovolska79-82
-
PV PANEL COOLING USING STACK EFFECT
Kudith Nageswara Rao, Ganesamoorthy Rajkuma83-85
-
A NEW AUTOMATIC INTELLIGENCE-BASED SOLAR LOAD CONTROL SYSTEM
Kudith Nageswara Rao, Ganesamoorthy Rajkuma86-89
-
OPTIMIZATION OF PARTS CUTTING PROCESS PARAMETERS WORKING IN CONDITIONS OF CYCLIC LOADS
Kateryna Barandych, Sergii Vysloukh, Grygoriy Tymchyk, Oleksandr Murashchenko, Saule Smailova, Saule Kumargazhanova90-93
-
RESEARCH THE EFFECT OF THE FRACTIONAL NUMBER SLOTS OF POLE ON WIND TURBINE GENERATION USING THE ENHANCED SPOTTED HYENA OPTIMIZATION ALGORITHM
Ibrahim M. Aladwan, Hasan Abdelrazzaq AL Dabbas, Ayman. M. Maqableh, Sayel M. Fayyad, Oleksandr Miroshnyk, Taras Shchur, Vadym Ptashnyk94-100
-
NEW SURFACE REFLECTANCE MODEL WITH THE COMBINATION OF TWO CUBIC FUNCTIONS USAGE
Oleksandr Romanyuk, Yevhen Zavalniuk, Sergii Pavlov, Roman Chekhmestruk, Zlata Bondarenko, Tetiana Koval, Aliya Kalizhanova, Aigul Iskakova101-106
-
THE CONCEPT OF ELECTRONIC CONTROL UNIT FOR COMBUSTION ENGINE IN HYBRID TANDEM
Tomasz Zyska, Marcin Powązka, Bartłomiej Forysiuk107-110
-
TESLA SWITCH OF 4 BATTERIES BASED ON THE ARDUINO UNO BOARD
Mykola Polishchuk, Serhii Grinyuk, Serhii Kostiuchko, Anatolii Tkachuk, Pavlo Savaryn111-116
-
REMOTE SOTA ALGORITHM FOR NB-IOT WIRELESS SENSORS – IMPLEMENTATION AND RESULTS
Piotr Szydłowski, Karol Zaręba117-120
-
DEVELOPMENT OF A SOFTWARE SYSTEM FOR PREDICTING EMPLOYEE RATINGS
Gulnar Balakayeva, Dauren Darkenbayev, Mukhit Zhanuzakov121-124
-
ENGINEERING AND TECHNICAL ASSESSMENT OF THE COMPETITIVENESS OF UKRAINIAN MECHANICAL ENGINEERING ENTERPRISES BASED ON THE APPLICATION OF REGRESSION MODELS
Anna Vitiuk, Leonid Polishchuk, Nataliia B. Savina, Oksana O. Adler, Gulzhan Kashaganova, Saule Kumargazhanova125-128
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
nagadeepikaginjupalli@gmail.com
Abstract
Road accidents are concerningly increasing in Andhra Pradesh. In 2021, Andhra Pradesh experienced a 20 percent upsurge in road accidents. The state's unfortunate position of being ranked eighth in terms of fatalities, with 8,946 lives lost in 22,311 traffic accidents, underscores the urgent nature of the problem. The significant financial impact on the victims and their families stresses the necessity for effective actions to reduce road accidents. This study proposes a framework that collects accident data from regions, namely Patamata, Penamaluru, Mylavaram, Krishnalanka, Ibrahimpatnam, and Gandhinagar in Vijayawada (India) from 2019 to 2021. The dataset comprises over 12,000 records of accident data. Deep learning techniques are applied to classify the severity of road accidents into Fatal, Grievous, and Severe Injuries. The classification procedure leverages advanced neural network models, including the Multilayer Perceptron, Long-Short Term Memory, Recurrent Neural Network, and Gated Recurrent Unit. These models are trained on the collected data to accurately predict the severity of road accidents. The project study to make important contributions for suggesting proactive measures and policies to reduce the severity and frequency of road accidents in Andhra Pradesh.
Keywords:
References
Al Bataineh A., Kaur D., Jalali S. M. J.: Multi-layer perceptron training optimization using nature-inspired computing. IEEE Access 10, 2022, 36963–36977. DOI: https://doi.org/10.1109/ACCESS.2022.3164669
Alghamdi T.A., Javaid N.: A survey of preprocessing methods used for analysis of big data originated from smart grids. IEEE Access 10, 2022, 29149–29171. DOI: https://doi.org/10.1109/ACCESS.2022.3157941
Amorim B. d. S.P., et al.: A Machine Learning Approach for Classifying Road Accident Hotspots. ISPRS International Journal of Geo-Information 12(6), 2023, 227. DOI: https://doi.org/10.3390/ijgi12060227
Athiappan K., et al.: Identifying Influencing Factors of Road Accidents in Emerging Road Accident Blackspots. Advances in Civil Engineering, 2022. DOI: https://doi.org/10.1155/2022/9474323
Cai Q.: Cause analysis of traffic accidents on urban roads based on an improved association rule mining algorithm. IEEE Access 8, 2020, 75607–75615. DOI: https://doi.org/10.1109/ACCESS.2020.2988288
Chen M.-M., Chen M.-Ch.: Modeling road accident severity with comparisons of logistic regression, decision tree, and random forest. Information 11(5), 2020, 270. DOI: https://doi.org/10.3390/info11050270
Comi A., Polimeni A., Balsamo Ch.: Road accident analysis with data mining approach: evidence from Rome. Transportation research procedia 62, 2022, 798–805. DOI: https://doi.org/10.1016/j.trpro.2022.02.099
Ferreira-Vanegas C. M., Vélez J. I., García-Llinás G. A.: Analytical methods and determinants of frequency and severity of road accidents: a 20-year systematic literature review. Journal of Advanced Transportation, 2022. DOI: https://doi.org/10.1155/2022/7239464
Gatarić D., et al.: Predicting Road Traffic Accidents - Artificial Neural Network Approach. Algorithms 16(5), 2023, 257. DOI: https://doi.org/10.3390/a16050257
Gorzelanczyk P., Tylicki H.: Methodology for Optimizing Factors Affecting Road Accidents in Poland. Forecasting 5(1), 2023, 336–350. DOI: https://doi.org/10.3390/forecast5010018
Gutierrez-Osorio C., González F. A., Pedraza C. A.: Deep Learning Ensemble Model for the Prediction of Traffic Accidents Using Social Media Data. Computers 11(9), 2022, 126. DOI: https://doi.org/10.3390/computers11090126
Islam M. J., et al.: Application of min-max normalization on subject-invariant EMG pattern recognition. IEEE Transactions on Instrumentation and Measurement 71, 2022, 1–12. DOI: https://doi.org/10.1109/TIM.2022.3220286
Jia B.-B., Zhang M.-L.: Multi-dimensional classification via decomposed label encoding. IEEE Transactions on Knowledge and Data Engineering, 2021.
Kaffash Charandabi N., Gholami A., Abdollahzadeh Bina A.: Road accident risk prediction using generalized regression neural network optimized with self-organizing map. Neural Computing and Applications 34(11), 2022, 8511–8524. DOI: https://doi.org/10.1007/s00521-021-06549-8
Komol, M.M.R., et al.: Deep RNN Based Prediction of Driver’s Intended Movements at Intersection Using Cooperative Awareness Messages. IEEE Transactions on Intelligent Transportation Systems 24(7), 2023, 6902–6921. DOI: https://doi.org/10.1109/TITS.2023.3254905
Le X.-H., et al.: Application of long short-term memory (LSTM) neural network for flood forecasting. Water 11(7), 2019, 1387. DOI: https://doi.org/10.3390/w11071387
Mandal V., et al.: Artificial intelligence-enabled traffic monitoring system. Sustainability 12(21), 2020, 9177. DOI: https://doi.org/10.3390/su12219177
Novikov A., Shevtsova A., Vasilieva V.: Development of an approach to reduce the number of accidents caused by drivers. Transportation research procedia 50, 2020, 491–498. DOI: https://doi.org/10.1016/j.trpro.2020.10.090
Östh J., et al.: Driver kinematic and muscle responses in braking events with standard and reversible pre-tensioned restraints: validation data for human models. SAE Technical Paper, 2013, 2013-22-0001. DOI: https://doi.org/10.4271/2013-22-0001
Rahman M.M., et al.: Towards sustainable road safety in Saudi Arabia: Exploring traffic accident causes associated with driving behavior using a Bayesian belief network. Sustainability 14(10), 2022, 6315. DOI: https://doi.org/10.3390/su14106315
Rezk N. M., et al.: Recurrent neural networks: An embedded computing perspective. IEEE Access 8, 2020, 57967–57996. DOI: https://doi.org/10.1109/ACCESS.2020.2982416
Saravanarajan V.S., et al.: Car crash detection using ensemble deep learning. Multimedia Tools and Applications, 2023, 1–19. DOI: https://doi.org/10.1007/s11042-023-15906-9
Sobhana M., et al.: A Hybrid Machine Learning Approach for Performing Predictive Analytics on Road Accidents. 6th International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), 2022. DOI: https://doi.org/10.1109/CSITSS57437.2022.10026404
Upadhyay D., et al.: Intrusion detection in SCADA based power grids: Recursive feature elimination model with majority vote ensemble algorithm. IEEE Transactions on Network Science and Engineering 8(3), 2021, 2559–2574. DOI: https://doi.org/10.1109/TNSE.2021.3099371
Yan J., et al.: Relationship between Highway Geometric Characteristics and Accident Risk: A Multilayer Perceptron Model (MLP) Approach. Sustainability 15(3), 2023, 1893. DOI: https://doi.org/10.3390/su15031893
Yin Y., et al.: SE-GRU: Structure Embedded Gated Recurrent Unit Neural Networks for Temporal Link Prediction. IEEE Transactions on Network Science and Engineering 9(4), 2022, 2495–2509. DOI: https://doi.org/10.1109/TNSE.2022.3164659
Zarei M., Hellinga B., Izadpanah P.: CGAN-EB: A non-parametric empirical Bayes method for crash frequency modeling using conditional generative adversarial networks as safety performance functions. International Journal of Transportation Science and Technology 12(3), 2023, 753–764. DOI: https://doi.org/10.1016/j.ijtst.2022.06.006
Zheng H., et al.: A hybrid deep learning model with attention-based conv-LSTM networks for short-term traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems 22(11), 2020, 6910–6920. DOI: https://doi.org/10.1109/TITS.2020.2997352
Road Accidents in Malaysia: Top 10 Causes & Prevention. Kurnia, 21 Sept. 2022 [http://www.kurnia.com/blog/road-accidents-causes].
Article Details
Abstract views: 389
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
