Abdelhay N., Prasad S., Gibson M. P.: Guided versus non-guided dental implant placement: a systematic review and meta-analysis. BDJ Open. 7(1), 2021, 31.
DOI: https://doi.org/10.1038/s41405-021-00086-1
Arunyanak S. P. et al.: The effect of factors related to periodontal status toward peri-implantitis. Clin Oral Implants Res. 30(8), 2019, 791–799.
DOI: https://doi.org/10.1111/clr.13461
Atieh M. A. et al.: Interventions for replacing missing teeth: alveolar ridge preservation techniques for dental implant site development. Cochrane Database of Systematic Reviews 4, 2021, CD010176.
DOI: https://doi.org/10.1002/14651858.CD010176.pub3
Bertolini M. M. et al.: Does traumatic occlusal forces lead to peri-implant bone loss? A systematic review. Braz Oral Res. 33(suppl 1), 2019, e069.
DOI: https://doi.org/10.1590/1807-3107bor-2019.vol33.0069
Clinical guidelines for the management of pulpal diseases, approved by Decree 15 of the Council of Public Association: Russian Dental Association. 2018.
Demkovich A. E., Yakymchuk M. M., Sverstyuk A. S.: Etiological risk factors for the occurrence of peri-implantitis. Clinical dentistry 2(31), 2020, 62–69.
Guo Y. et al.: Influence of marginal bone resorption on two mini implant-retained mandibular overdenture: An in vitro study. J Adv Prosthodont. 13(1), 2021, 55–64.
DOI: https://doi.org/10.4047/jap.2021.13.1.55
Katelyan O. V. et al.: Study of the peripheral blood circulation of an abdominal wall using optoelectronic plethysmograph. W.Wojcik et al. (eds): Information Technology in Medical Diagnostics II. CRC Press, Balkema book, Taylor & Francis Group, London, UK, 2019, 119–125.
DOI: https://doi.org/10.1201/9780429057618-15
Kozlovska T. I. et al.: Device to determine the level of peripheral blood circulation and saturation. Proc. SPIE 10031, 2016, 100312Z.
DOI: https://doi.org/10.1117/12.2249131
Nizhynska-Astapenko Z. et al.: Information medical fuzzy-expert systemfor the assessment of the diabetic ketoacidosis severity on the base of the blood gases indices. Proc. SPIE 12126, 2021.
DOI: https://doi.org/10.1117/12.2616675
Pavlov S. V. et al.: Analysis of microcirculatory disorders in inflammatory processes in the maxillofacial region on based of optoelectronic methods. Przeglad Elektrotechniczny 93(5), 2017, 114–117.
DOI: https://doi.org/10.15199/48.2017.05.23
Pavlov S. V. et al.: Electro-optical system for the automated selection of dental implants according to their colour matching. Przeglad Elektrotechniczny 93(3), 2017, 121–124.
DOI: https://doi.org/10.15199/48.2017.03.28
Pelekhan B. L., Rozhko M. M.: Bone tissue resorption around intraosseous dental implants in patients with mandible edentulousness. Stomatological Bulletin 121(4), 2023, 55–62.
Pelekhan B. et al.: Analytical Modeling of the Interaction of a Four Implant-Supported Overdenture with Bone Tissue. Materials 15(7), 2022, 2398.
DOI: https://doi.org/10.3390/ma15072398
Polishchuk S. S., Skyba V. Ya., Davydenko I. S.: Histological changes of bone tissue in the perforation defect site of the rat mandibule when using hepatoprotector in odstructive hepatitis. World of medicine and biology 16(72), 2020, 193–198.
DOI: https://doi.org/10.26724/2079-8334-2020-2-72-193-198
Polishchuk V. S., Polishchuk S. S.: Peculiarities of the course after the operative course of patients after dental implantation on the background of the pathology of the hepatobilier system. Stomatological Bulletin 120(3), 2022, 51–56.
Rotshtein A.: Design and Tuning of Fussy IF –THEN Vuly for Medical Didicol Diagnosis. H.-N.L Teodorescu, et al. (eds): Fuzzy and Neuro-Fuzzy Systems in Medicine. CRC-Press, 1998, 235–295.
Sidor O. V.: The strategy for planning surgical stage dental implantation. Stomatological Bulletin 118(1), 2022, 50–55.
DOI: https://doi.org/10.35220/2078-8916-2022-43-1.9
Semenov Ye. I. et al.: Comparative characteristics of dental defects and the volume of implantological care in the young population of Ukraine. Stomatological Bulletin 119(2), 2022, 60–65.
Serkova V. K. et al.: Medical expert system for assessment of coronary heart disease destabilization based on the analysis of the level of soluble vascular adhesion molecules. Proc. SPIE 10445, 2017, 104453O.
DOI: https://doi.org/10.1117/12.2280984
Shkilniak L. et al.: Expert fuzzy systems for evaluation of intensity of reactive edema of soft tissues in patients with diabetes. Informtyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOS, 2022, 3, 59–63.
DOI: https://doi.org/10.35784/iapgos.3037
Taubayev G. et al.: Machine learning algorithms and classificationof textures. Journal of Theoretical and Applied Information Technologythis 98(23), 2020, 3854–3866.
Ushenko Yu. A., Sidor M. I., Bodnar G. B.: Mueller-matrix mapping of optically anisotropic fluorophores of biological tissues in the diagnosis of cancer. Quanrum Electron. 44(8), 2014, 785–790.
DOI: https://doi.org/10.1070/QE2014v044n08ABEH015295
Ushenko V. A., Gavrylyak M. S.: Azimuthally invariant Mueller-matrix mapping of biological tissue in differential diagnosis of mechanisms protein molecules networks anisotropy. Proc. SPIE 8812, 2016, 88120Y.
DOI: https://doi.org/10.1117/12.2023686
Vasilevskyi O. et al.: Method of evaluating thelevel of confidence basedon metrological risks for determining the coverage factorin the concept of uncertainty. Proc. SPIE. 10808, 2018, 108082C.
Vassilenko V. et al.: Automated features analysis of patients with spinal diseases using medical thermal images. Proc. SPIE 11456, 2020, 114560L.
DOI: https://doi.org/10.1117/12.2569780
Wójcik W. et al. (eds): Information Technology in Medical Diagnostics. CRC Press, 2017.
DOI: https://doi.org/10.1201/9781315098050
Wójcik W. et al. (eds): Information Technology in Medical Diagnostics II. Taylor & Francis Group. CRC Press, Balkema Book, London, 2019.
DOI: https://doi.org/10.1201/9780429057618
Wójcik W. et al.: Medical Fuzzy-Expert System for Assessment of the Degree of Anatomical Lesion of Coronary Arteries. Int. J. Environ. Res. Public Health 20(2), 2023, 979 [https://doi.org/10.3390/ijerph20020979].
DOI: https://doi.org/10.3390/ijerph20020979
Zabolotna N. I. et al.: Diagnostics of pathologically changed birefringent networks by means of phase Mueller matrix tomography. Proc. SPIE 8698, 2013, 86980C.
DOI: https://doi.org/10.1117/12.2019476
Zabolotna N. I. et al.: System of polarization phasometry of polycrystalline blood plasma networks in mammary gland pathology diagnostics. Proc. SPIE 9613, 2015, 961311.
DOI: https://doi.org/10.1117/12.2187383