AN ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM WITH A BOUND ADJUSTMENT STRATEGY FOR SOLVING NONLINEAR PARAMETER IDENTIFICATION PROBLEMS
Watchara Wongsa
Khon Kaen University (Thailand)
https://orcid.org/0000-0001-6320-149X
Pikul Puphasuk
Khon Kaen University (Thailand)
https://orcid.org/0000-0001-9069-1703
Jeerayut Wetweerapong
wjeera@kku.ac.thKhon Kaen University (Thailand)
https://orcid.org/0000-0001-5053-3989
Abstract
Real-world parameter identification problems require determining the bounds that cover the unknown solutions. This paper presents an adaptive differential evolution algorithm with a bound adjustment strategy (ADEBAS) for solving nonlinear parameter identification problems. The adjustment strategy detects the parameter-bound violations of mutant vectors during the evolution process and gradually extends the bounds. The algorithm adaptively uses two mutation strategies and two ranges of crossover rate to balance the population diversity and convergence speed. Experimental results show that ADEBAS can solve 24 nonlinear regression tasks from the National Institute of Standards and Technology benchmark with accurate estimation and reliability. It also outperforms the compared methods on real-world parameter identification problems.
Keywords:
parameter identification, differential evolution algorithm, bound adjustment strategyReferences
Alam D. F. et al.: Flower pollination algorithm based solar PV parameter estimation. Energy Conversion and Management 101, 2015, 410–422 [http://dx.doi.org/10.1016/j.enconman.2015.05.074].
Google Scholar
Askary R., Najarchi M., Mazaheri H.: Estimating SWRC parameters and unsaturated hydraulic permeability by improved Jaya and hybrid improved jaya optimization algorithms. Earth Science Informatics 15(4), 2022, 2155–2169 [https://doi.org/10.1007/s12145-022-00862-z].
Google Scholar
Barati R.: Parameter estimation of nonlinear Muskingum models using Nelder-Mead simplex algorithm. Journal of Hydrologic Engineering 16(11), 2011, 946–954 [http://doi.org/10.1061/(ASCE)HE.1943-5584.0000379].
Google Scholar
Brooks S. P., Morgan B. J.: Optimization using simulated annealing. Journal of the Royal Statistical Society Series D: The Statistician 44(2), 1995, 241–257.
Google Scholar
Chen X. et al.: Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation. Applied energy 212, 2018, 1578–1588 [https://doi.org/10.1016/j.apenergy.2017.12.115].
Google Scholar
Gautier M., Janot A., Vandanjon P. O.: A new closed-loop output error method for parameter identification of robot dynamics. IEEE Transactions on Control Systems Technology 21(2), 2012, 428–444 [https://doi.org/10.1109/TCST.2012.2185697].
Google Scholar
Hu Z., Gong W., Li S.: Reinforcement learning-based differential evolution for parameters extraction of photovoltaic models. Energy Reports 7, 2021, 916–928 [https://doi.org/10.1016/j.egyr.2021.01.096].
Google Scholar
Jin J., Gans N.: Parameter identification for industrial robots with a fast and robust trajectory design approach. Robotics and Computer-Integrated Manufacturing 31, 2015, 21–29 [https://doi.org/10.1016/j.rcim.2014.06.004].
Google Scholar
Kennedy J., Eberhart R.: Particle swarm optimization. Proceedings of ICNN'95-international conference on neural networks, 1995, 1942–1948.
Google Scholar
Li S., Gong W., Yan X., Hu C., Bai D., Wang L.: Parameter estimation of photovoltaic models with memetic adaptive differential evolution. Solar Energy 190, 2019, 465–474 [https://doi.org/10.1016/j.solener.2019.08.022].
Google Scholar
Liang J. et al.: Parameters estimation of solar photovoltaic models via a self-adaptive ensemble-based differential evolution. Solar Energy 207, 2020, 336–346 [https://doi.org/10.1016/j.solener.2020.06.100].
Google Scholar
Mohan S.: Parameter estimation of nonlinear Muskingum models using genetic algorithm. Journal of hydraulic engineering 123(2), 1997, 137–142 [https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(137)].
Google Scholar
Nemes A. D. et al.: Description of the unsaturated soil hydraulic database UNSODA version 2.0. Journal of hydrology 251(3-4), 2001, 151–162.
Google Scholar
Price W. L.: A controlled random search procedure for global optimisation. The Computer Journal 20(4), 1977, 367–370.
Google Scholar
Puphasuk P., Wetweerapong J.: An enhanced differential evolution algorithm with adaptation of switching crossover strategy for continuous optimization. Foundations of Computing and Decision Sciences 45(2), 2020, 97–124 [https://doi.org/10.2478/fcds-2020-0007].
Google Scholar
Salhi H., Kamoun S.: A recursive parametric estimation algorithm of multivariable nonlinear systems described by Hammerstein mathematical models. Applied Mathematical Modelling 39(16), 2015, 4951–4962 [https://doi.org/10.1016/j.apm.2015.03.050].
Google Scholar
Singsathid P., Wetweerapong J., Puphasuk P.: Parameter estimation of solar PV models using self-adaptive differential evolution with dynamic mutation and pheromone strategy. Computer Science 19(1), 2024, 13–21.
Google Scholar
Storn R., Price K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization 11, 1997, 341–359 [http://doi.org/10.1023/A:1008202821328].
Google Scholar
Tvrdík J., Křivý I., Mišík L.: Adaptive population-based search: application to estimation of nonlinear regression parameters. Computational statistics & data analysis 52(2), 2007, 713–724 [https://doi.org/10.1016/j.csda.2006.10.014].
Google Scholar
Wang D. et al.: Heterogeneous differential evolution algorithm for parameter estimation of solar photovoltaic models. Energy Reports 8, 2022, 4724–4746 [https://doi.org/10.1016/j.egyr.2022.03.144].
Google Scholar
Wang L., Huang C., Huang L.: Parameter estimation of the soil water retention curve model with Jaya algorithm. Computers and Electronics in Agriculture 151, 2018, 349–353 [https://doi.org/10.1016/j.compag.2018.06.024].
Google Scholar
Whitley D.: A genetic algorithm tutorial. Statistics and computing 4, 1994, 65–85.
Google Scholar
Xu L.: The damping iterative parameter identification method for dynamical systems based on the sine signal measurement. Signal Processing 120, 2016, 660–667 [https://doi.org/10.1016/j.sigpro.2015.10.009].
Google Scholar
Yang X., You X.: Estimating parameters of van Genuchten model for soil water retention curve by intelligent algorithms. Applied Mathematics & Information Sciences 7(5), 2013, 1977–1983.
Google Scholar
Yu K. et al.: A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module. Applied Energy 237, 2019, 241–257 [https://doi.org/10.1016/j.apenergy.2019.01.008].
Google Scholar
Zhang J., Wang Z., Luo X.: Parameter estimation for soil water retention curve using the salp swarm algorithm. Water 10(6), 2018, 815 [https://doi.org/10.3390/w10060815].
Google Scholar
Zhou J. et al.: Parameters identification of photovoltaic models using a differential evolution algorithm based on elite and obsolete dynamic learning. Applied Energy 314, 2022, [https://doi.org/10.1016/j.apenergy.2022.118877].
Google Scholar
National Institute of Standards and Technology. Nonlinear regression, 2003 [https://www.itl.nist.gov/div898/strd/nls/nls_info.shtml].
Google Scholar
Authors
Jeerayut Wetweerapongwjeera@kku.ac.th
Khon Kaen University Thailand
https://orcid.org/0000-0001-5053-3989
Statistics
Abstract views: 94PDF downloads: 69
Most read articles by the same author(s)
- Saithip Limtrakul, Jeerayut Wetweerapong, AN ENHANCED DIFFERENTIAL EVOLUTION ALGORITHM WITH ADAPTIVE WEIGHT BOUNDS FOR EFFICIENT TRAINING OF NEURAL NETWORKS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 1 (2023)