AN ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM WITH A BOUND ADJUSTMENT STRATEGY FOR SOLVING NONLINEAR PARAMETER IDENTIFICATION PROBLEMS
Watchara Wongsa
Khon Kaen University (Thailand)
https://orcid.org/0000-0001-6320-149X
Pikul Puphasuk
Khon Kaen University (Thailand)
https://orcid.org/0000-0001-9069-1703
Jeerayut Wetweerapong
wjeera@kku.ac.thKhon Kaen University (Thailand)
https://orcid.org/0000-0001-5053-3989
Abstract
Real-world parameter identification problems require determining the bounds that cover the unknown solutions. This paper presents an adaptive differential evolution algorithm with a bound adjustment strategy (ADEBAS) for solving nonlinear parameter identification problems. The adjustment strategy detects the parameter-bound violations of mutant vectors during the evolution process and gradually extends the bounds. The algorithm adaptively uses two mutation strategies and two ranges of crossover rate to balance the population diversity and convergence speed. Experimental results show that ADEBAS can solve 24 nonlinear regression tasks from the National Institute of Standards and Technology benchmark with accurate estimation and reliability. It also outperforms the compared methods on real-world parameter identification problems.
Keywords:
parameter identification, differential evolution algorithm, bound adjustment strategyReferences
Alam D. F. et al.: Flower pollination algorithm based solar PV parameter estimation. Energy Conversion and Management 101, 2015, 410–422 [http://dx.doi.org/10.1016/j.enconman.2015.05.074].
DOI: https://doi.org/10.1016/j.enconman.2015.05.074
Google Scholar
Askary R., Najarchi M., Mazaheri H.: Estimating SWRC parameters and unsaturated hydraulic permeability by improved Jaya and hybrid improved jaya optimization algorithms. Earth Science Informatics 15(4), 2022, 2155–2169 [https://doi.org/10.1007/s12145-022-00862-z].
DOI: https://doi.org/10.1007/s12145-022-00862-z
Google Scholar
Barati R.: Parameter estimation of nonlinear Muskingum models using Nelder-Mead simplex algorithm. Journal of Hydrologic Engineering 16(11), 2011, 946–954 [http://doi.org/10.1061/(ASCE)HE.1943-5584.0000379].
DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000379
Google Scholar
Brooks S. P., Morgan B. J.: Optimization using simulated annealing. Journal of the Royal Statistical Society Series D: The Statistician 44(2), 1995, 241–257.
DOI: https://doi.org/10.2307/2348448
Google Scholar
Chen X. et al.: Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation. Applied energy 212, 2018, 1578–1588 [https://doi.org/10.1016/j.apenergy.2017.12.115].
DOI: https://doi.org/10.1016/j.apenergy.2017.12.115
Google Scholar
Gautier M., Janot A., Vandanjon P. O.: A new closed-loop output error method for parameter identification of robot dynamics. IEEE Transactions on Control Systems Technology 21(2), 2012, 428–444 [https://doi.org/10.1109/TCST.2012.2185697].
DOI: https://doi.org/10.1109/TCST.2012.2185697
Google Scholar
Hu Z., Gong W., Li S.: Reinforcement learning-based differential evolution for parameters extraction of photovoltaic models. Energy Reports 7, 2021, 916–928 [https://doi.org/10.1016/j.egyr.2021.01.096].
DOI: https://doi.org/10.1016/j.egyr.2021.01.096
Google Scholar
Jin J., Gans N.: Parameter identification for industrial robots with a fast and robust trajectory design approach. Robotics and Computer-Integrated Manufacturing 31, 2015, 21–29 [https://doi.org/10.1016/j.rcim.2014.06.004].
DOI: https://doi.org/10.1016/j.rcim.2014.06.004
Google Scholar
Kennedy J., Eberhart R.: Particle swarm optimization. Proceedings of ICNN'95-international conference on neural networks, 1995, 1942–1948.
DOI: https://doi.org/10.1109/ICNN.1995.488968
Google Scholar
Li S., Gong W., Yan X., Hu C., Bai D., Wang L.: Parameter estimation of photovoltaic models with memetic adaptive differential evolution. Solar Energy 190, 2019, 465–474 [https://doi.org/10.1016/j.solener.2019.08.022].
DOI: https://doi.org/10.1016/j.solener.2019.08.022
Google Scholar
Liang J. et al.: Parameters estimation of solar photovoltaic models via a self-adaptive ensemble-based differential evolution. Solar Energy 207, 2020, 336–346 [https://doi.org/10.1016/j.solener.2020.06.100].
DOI: https://doi.org/10.1016/j.solener.2020.06.100
Google Scholar
Mohan S.: Parameter estimation of nonlinear Muskingum models using genetic algorithm. Journal of hydraulic engineering 123(2), 1997, 137–142 [https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(137)].
DOI: https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(137)
Google Scholar
Nemes A. D. et al.: Description of the unsaturated soil hydraulic database UNSODA version 2.0. Journal of hydrology 251(3-4), 2001, 151–162.
DOI: https://doi.org/10.1016/S0022-1694(01)00465-6
Google Scholar
Price W. L.: A controlled random search procedure for global optimisation. The Computer Journal 20(4), 1977, 367–370.
DOI: https://doi.org/10.1093/comjnl/20.4.367
Google Scholar
Puphasuk P., Wetweerapong J.: An enhanced differential evolution algorithm with adaptation of switching crossover strategy for continuous optimization. Foundations of Computing and Decision Sciences 45(2), 2020, 97–124 [https://doi.org/10.2478/fcds-2020-0007].
DOI: https://doi.org/10.2478/fcds-2020-0007
Google Scholar
Salhi H., Kamoun S.: A recursive parametric estimation algorithm of multivariable nonlinear systems described by Hammerstein mathematical models. Applied Mathematical Modelling 39(16), 2015, 4951–4962 [https://doi.org/10.1016/j.apm.2015.03.050].
DOI: https://doi.org/10.1016/j.apm.2015.03.050
Google Scholar
Singsathid P., Wetweerapong J., Puphasuk P.: Parameter estimation of solar PV models using self-adaptive differential evolution with dynamic mutation and pheromone strategy. Computer Science 19(1), 2024, 13–21.
DOI: https://doi.org/10.11591/eei.v13i1.6590
Google Scholar
Storn R., Price K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization 11, 1997, 341–359 [http://doi.org/10.1023/A:1008202821328].
DOI: https://doi.org/10.1023/A:1008202821328
Google Scholar
Tvrdík J., Křivý I., Mišík L.: Adaptive population-based search: application to estimation of nonlinear regression parameters. Computational statistics & data analysis 52(2), 2007, 713–724 [https://doi.org/10.1016/j.csda.2006.10.014].
DOI: https://doi.org/10.1016/j.csda.2006.10.014
Google Scholar
Wang D. et al.: Heterogeneous differential evolution algorithm for parameter estimation of solar photovoltaic models. Energy Reports 8, 2022, 4724–4746 [https://doi.org/10.1016/j.egyr.2022.03.144].
DOI: https://doi.org/10.1016/j.egyr.2022.03.144
Google Scholar
Wang L., Huang C., Huang L.: Parameter estimation of the soil water retention curve model with Jaya algorithm. Computers and Electronics in Agriculture 151, 2018, 349–353 [https://doi.org/10.1016/j.compag.2018.06.024].
DOI: https://doi.org/10.1016/j.compag.2018.06.024
Google Scholar
Whitley D.: A genetic algorithm tutorial. Statistics and computing 4, 1994, 65–85.
DOI: https://doi.org/10.1007/BF00175354
Google Scholar
Xu L.: The damping iterative parameter identification method for dynamical systems based on the sine signal measurement. Signal Processing 120, 2016, 660–667 [https://doi.org/10.1016/j.sigpro.2015.10.009].
DOI: https://doi.org/10.1016/j.sigpro.2015.10.009
Google Scholar
Yang X., You X.: Estimating parameters of van Genuchten model for soil water retention curve by intelligent algorithms. Applied Mathematics & Information Sciences 7(5), 2013, 1977–1983.
DOI: https://doi.org/10.12785/amis/070537
Google Scholar
Yu K. et al.: A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module. Applied Energy 237, 2019, 241–257 [https://doi.org/10.1016/j.apenergy.2019.01.008].
DOI: https://doi.org/10.1016/j.apenergy.2019.01.008
Google Scholar
Zhang J., Wang Z., Luo X.: Parameter estimation for soil water retention curve using the salp swarm algorithm. Water 10(6), 2018, 815 [https://doi.org/10.3390/w10060815].
DOI: https://doi.org/10.3390/w10060815
Google Scholar
Zhou J. et al.: Parameters identification of photovoltaic models using a differential evolution algorithm based on elite and obsolete dynamic learning. Applied Energy 314, 2022, [https://doi.org/10.1016/j.apenergy.2022.118877].
DOI: https://doi.org/10.1016/j.apenergy.2022.118877
Google Scholar
National Institute of Standards and Technology. Nonlinear regression, 2003 [https://www.itl.nist.gov/div898/strd/nls/nls_info.shtml].
Google Scholar
Authors
Jeerayut Wetweerapongwjeera@kku.ac.th
Khon Kaen University Thailand
https://orcid.org/0000-0001-5053-3989
Statistics
Abstract views: 120PDF downloads: 90
Most read articles by the same author(s)
- Saithip Limtrakul, Jeerayut Wetweerapong, AN ENHANCED DIFFERENTIAL EVOLUTION ALGORITHM WITH ADAPTIVE WEIGHT BOUNDS FOR EFFICIENT TRAINING OF NEURAL NETWORKS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 1 (2023)