AN ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM WITH A BOUND ADJUSTMENT STRATEGY FOR SOLVING NONLINEAR PARAMETER IDENTIFICATION PROBLEMS

Watchara Wongsa


Khon Kaen University (Thailand)
https://orcid.org/0000-0001-6320-149X

Pikul Puphasuk


Khon Kaen University (Thailand)
https://orcid.org/0000-0001-9069-1703

Jeerayut Wetweerapong

wjeera@kku.ac.th
Khon Kaen University (Thailand)
https://orcid.org/0000-0001-5053-3989

Abstract

Real-world parameter identification problems require determining the bounds that cover the unknown solutions. This paper presents an adaptive differential evolution algorithm with a bound adjustment strategy (ADEBAS) for solving nonlinear parameter identification problems. The adjustment strategy detects the parameter-bound violations of mutant vectors during the evolution process and gradually extends the bounds. The algorithm adaptively uses two mutation strategies and two ranges of crossover rate to balance the population diversity and convergence speed. Experimental results show that ADEBAS can solve 24 nonlinear regression tasks from the National Institute of Standards and Technology benchmark with accurate estimation and reliability. It also outperforms the compared methods on real-world parameter identification problems.


Keywords:

parameter identification, differential evolution algorithm, bound adjustment strategy

Alam D. F. et al.: Flower pollination algorithm based solar PV parameter estimation. Energy Conversion and Management 101, 2015, 410–422 [http://dx.doi.org/10.1016/j.enconman.2015.05.074].
DOI: https://doi.org/10.1016/j.enconman.2015.05.074   Google Scholar

Askary R., Najarchi M., Mazaheri H.: Estimating SWRC parameters and unsaturated hydraulic permeability by improved Jaya and hybrid improved jaya optimization algorithms. Earth Science Informatics 15(4), 2022, 2155–2169 [https://doi.org/10.1007/s12145-022-00862-z].
DOI: https://doi.org/10.1007/s12145-022-00862-z   Google Scholar

Barati R.: Parameter estimation of nonlinear Muskingum models using Nelder-Mead simplex algorithm. Journal of Hydrologic Engineering 16(11), 2011, 946–954 [http://doi.org/10.1061/(ASCE)HE.1943-5584.0000379].
DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000379   Google Scholar

Brooks S. P., Morgan B. J.: Optimization using simulated annealing. Journal of the Royal Statistical Society Series D: The Statistician 44(2), 1995, 241–257.
DOI: https://doi.org/10.2307/2348448   Google Scholar

Chen X. et al.: Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation. Applied energy 212, 2018, 1578–1588 [https://doi.org/10.1016/j.apenergy.2017.12.115].
DOI: https://doi.org/10.1016/j.apenergy.2017.12.115   Google Scholar

Gautier M., Janot A., Vandanjon P. O.: A new closed-loop output error method for parameter identification of robot dynamics. IEEE Transactions on Control Systems Technology 21(2), 2012, 428–444 [https://doi.org/10.1109/TCST.2012.2185697].
DOI: https://doi.org/10.1109/TCST.2012.2185697   Google Scholar

Hu Z., Gong W., Li S.: Reinforcement learning-based differential evolution for parameters extraction of photovoltaic models. Energy Reports 7, 2021, 916–928 [https://doi.org/10.1016/j.egyr.2021.01.096].
DOI: https://doi.org/10.1016/j.egyr.2021.01.096   Google Scholar

Jin J., Gans N.: Parameter identification for industrial robots with a fast and robust trajectory design approach. Robotics and Computer-Integrated Manufacturing 31, 2015, 21–29 [https://doi.org/10.1016/j.rcim.2014.06.004].
DOI: https://doi.org/10.1016/j.rcim.2014.06.004   Google Scholar

Kennedy J., Eberhart R.: Particle swarm optimization. Proceedings of ICNN'95-international conference on neural networks, 1995, 1942–1948.
DOI: https://doi.org/10.1109/ICNN.1995.488968   Google Scholar

Li S., Gong W., Yan X., Hu C., Bai D., Wang L.: Parameter estimation of photovoltaic models with memetic adaptive differential evolution. Solar Energy 190, 2019, 465–474 [https://doi.org/10.1016/j.solener.2019.08.022].
DOI: https://doi.org/10.1016/j.solener.2019.08.022   Google Scholar

Liang J. et al.: Parameters estimation of solar photovoltaic models via a self-adaptive ensemble-based differential evolution. Solar Energy 207, 2020, 336–346 [https://doi.org/10.1016/j.solener.2020.06.100].
DOI: https://doi.org/10.1016/j.solener.2020.06.100   Google Scholar

Mohan S.: Parameter estimation of nonlinear Muskingum models using genetic algorithm. Journal of hydraulic engineering 123(2), 1997, 137–142 [https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(137)].
DOI: https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(137)   Google Scholar

Nemes A. D. et al.: Description of the unsaturated soil hydraulic database UNSODA version 2.0. Journal of hydrology 251(3-4), 2001, 151–162.
DOI: https://doi.org/10.1016/S0022-1694(01)00465-6   Google Scholar

Price W. L.: A controlled random search procedure for global optimisation. The Computer Journal 20(4), 1977, 367–370.
DOI: https://doi.org/10.1093/comjnl/20.4.367   Google Scholar

Puphasuk P., Wetweerapong J.: An enhanced differential evolution algorithm with adaptation of switching crossover strategy for continuous optimization. Foundations of Computing and Decision Sciences 45(2), 2020, 97–124 [https://doi.org/10.2478/fcds-2020-0007].
DOI: https://doi.org/10.2478/fcds-2020-0007   Google Scholar

Salhi H., Kamoun S.: A recursive parametric estimation algorithm of multivariable nonlinear systems described by Hammerstein mathematical models. Applied Mathematical Modelling 39(16), 2015, 4951–4962 [https://doi.org/10.1016/j.apm.2015.03.050].
DOI: https://doi.org/10.1016/j.apm.2015.03.050   Google Scholar

Singsathid P., Wetweerapong J., Puphasuk P.: Parameter estimation of solar PV models using self-adaptive differential evolution with dynamic mutation and pheromone strategy. Computer Science 19(1), 2024, 13–21.
DOI: https://doi.org/10.11591/eei.v13i1.6590   Google Scholar

Storn R., Price K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization 11, 1997, 341–359 [http://doi.org/10.1023/A:1008202821328].
DOI: https://doi.org/10.1023/A:1008202821328   Google Scholar

Tvrdík J., Křivý I., Mišík L.: Adaptive population-based search: application to estimation of nonlinear regression parameters. Computational statistics & data analysis 52(2), 2007, 713–724 [https://doi.org/10.1016/j.csda.2006.10.014].
DOI: https://doi.org/10.1016/j.csda.2006.10.014   Google Scholar

Wang D. et al.: Heterogeneous differential evolution algorithm for parameter estimation of solar photovoltaic models. Energy Reports 8, 2022, 4724–4746 [https://doi.org/10.1016/j.egyr.2022.03.144].
DOI: https://doi.org/10.1016/j.egyr.2022.03.144   Google Scholar

Wang L., Huang C., Huang L.: Parameter estimation of the soil water retention curve model with Jaya algorithm. Computers and Electronics in Agriculture 151, 2018, 349–353 [https://doi.org/10.1016/j.compag.2018.06.024].
DOI: https://doi.org/10.1016/j.compag.2018.06.024   Google Scholar

Whitley D.: A genetic algorithm tutorial. Statistics and computing 4, 1994, 65–85.
DOI: https://doi.org/10.1007/BF00175354   Google Scholar

Xu L.: The damping iterative parameter identification method for dynamical systems based on the sine signal measurement. Signal Processing 120, 2016, 660–667 [https://doi.org/10.1016/j.sigpro.2015.10.009].
DOI: https://doi.org/10.1016/j.sigpro.2015.10.009   Google Scholar

Yang X., You X.: Estimating parameters of van Genuchten model for soil water retention curve by intelligent algorithms. Applied Mathematics & Information Sciences 7(5), 2013, 1977–1983.
DOI: https://doi.org/10.12785/amis/070537   Google Scholar

Yu K. et al.: A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module. Applied Energy 237, 2019, 241–257 [https://doi.org/10.1016/j.apenergy.2019.01.008].
DOI: https://doi.org/10.1016/j.apenergy.2019.01.008   Google Scholar

Zhang J., Wang Z., Luo X.: Parameter estimation for soil water retention curve using the salp swarm algorithm. Water 10(6), 2018, 815 [https://doi.org/10.3390/w10060815].
DOI: https://doi.org/10.3390/w10060815   Google Scholar

Zhou J. et al.: Parameters identification of photovoltaic models using a differential evolution algorithm based on elite and obsolete dynamic learning. Applied Energy 314, 2022, [https://doi.org/10.1016/j.apenergy.2022.118877].
DOI: https://doi.org/10.1016/j.apenergy.2022.118877   Google Scholar

National Institute of Standards and Technology. Nonlinear regression, 2003 [https://www.itl.nist.gov/div898/strd/nls/nls_info.shtml].
  Google Scholar

Download


Published
2024-06-30

Cited by

Wongsa, W., Puphasuk, P., & Wetweerapong, J. (2024). AN ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM WITH A BOUND ADJUSTMENT STRATEGY FOR SOLVING NONLINEAR PARAMETER IDENTIFICATION PROBLEMS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 14(2), 119–126. https://doi.org/10.35784/iapgos.5684

Authors

Watchara Wongsa 

Khon Kaen University Thailand
https://orcid.org/0000-0001-6320-149X

Authors

Pikul Puphasuk 

Khon Kaen University Thailand
https://orcid.org/0000-0001-9069-1703

Authors

Jeerayut Wetweerapong 
wjeera@kku.ac.th
Khon Kaen University Thailand
https://orcid.org/0000-0001-5053-3989

Statistics

Abstract views: 120
PDF downloads: 90


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.