ANALYSIS OF DATA FROM MEASURING SENSORS FOR PREDICTION IN PRODUCTION PROCESS CONTROL SYSTEMS
Article Sidebar
Open full text
Issue Vol. 9 No. 4 (2019)
-
CONCEPT OF A SELF-LEARNING WORKPLACE CELL FOR WORKER ASSISTANCE WHILE COLLABORATION WITH A ROBOT WITHIN THE SELF-ADAPTING-PRODUCTION-PLANNING-SYSTEM
Johanna Ender, Jan Cetric Wagner, Georg Kunert, Fang Bin Guo, Roland Larek, Thorsten Pawletta4-9
-
DATA-BASED PREDICTION OF SOOT EMISSIONS FOR TRANSIENT ENGINE OPERATION
Michele Schaub10-13
-
APPLICATION OF THE LENNARD-JONES POTENTIAL IN MODELLING ROBOT MOTION
Piotr Wójcicki, Tomasz Zientarski14-17
-
APPLICATION OF ARTIFICIAL NEURAL NETWORK IN THE PROCESS OF SELECTION OF ORGANIC COATINGS
Artur Popko, Konrad Gauda18-21
-
APPLICATION OF OPTICAL PROFILOMETRY IN THE ANALYSIS OF THE DESTRUCTION PROCESS OF RENOVATION ORGANIC COATINGS FOR THE AUTOMOTIVE INDUSTRY
Konrad Gauda, Kamil Pasierbiewicz22-25
-
ANALYSIS OF DATA FROM MEASURING SENSORS FOR PREDICTION IN PRODUCTION PROCESS CONTROL SYSTEMS
Tomasz Rymarczyk, Bartek Przysucha, Marcin Kowalski, Piotr Bednarczuk26-29
-
MEASUREMENT OF TWO-PHASE GAS-LIQUID FLOW USING STANDARD AND SLOTTED ORIFICE
Barbara Tomaszewska-Wach, Mariusz R. Rząsa, Marcin Majer30-33
-
DETERMINATION OF YOUNG’S DYNAMIC MODULUS OF POLYMER MATERIALS BY RESONANCE VIBRATING-REED METHOD
Volodymyr Mashchenko, Valentine Krivtsov, Volodymyr Kvasnikov, Volodymyr Drevetskiy34-37
-
DETERMINATION OF THE OPTIMAL SCANNING STEP FOR EVALUATION OF IMAGE RECONSTRUCTION QUALITY IN MAGNETOACOUSTIC TOMOGRAPHY WITH MAGNETIC INDUCTION
Adam Ryszard Zywica, Marcin Ziolkowski38-42
-
CONSTRUCTION OF AN ULTRASONIC TOMOGRAPH FOR ANALYSIS OF TECHNOLOGICAL PROCESSES IN THE FIELD OF REFLECTION AND TRANSMISSION WAVES
Tomasz Rymarczyk, Michał Gołąbek, Piotr Lesiak, Andrzej Marciniak, Mirosław Guzik43-47
-
A NEW CONCEPT OF DISCRETIZATION MODEL FOR IMAGING IMPROVING IN ULTRASOUND TRANSMISSION TOMOGRAPHY
Tomasz Rymarczyk, Krzysztof Polakowski, Jan Sikora48-51
-
EVALUATION OF THE ELECTRICAL CAPACITANCE TOMOGRAPHY SYSTEM FOR MEASUREMENT USING 3D SENSOR
Jacek Kryszyn, Damian Wanta, Waldemar T. Smolik52-59
-
USING 3D PRINTING TECHNOLOGY TO FULL-SCALE SIMULATION OF THE UPPER RESPIRATORY TRACT
Oleg Avrunin, Yana Nosova, Ibrahim Younouss Abdelhamid, Oleksandr Gryshkov, Birgit Glasmacher60-63
-
CONCEPT AND REALIZATION OF BACKPACK-TYPE SYSTEM FOR MULTICHANNEL ELECTROPHYSIOLOGY IN FREELY BEHAVING RODENTS
Olga Chaikovska, Oleksandr Ponomarenko, Olexandr Dovgan, Igor Rokunets, Sergii Pavlov, Olena Kryvoviaz, Oleg Vlasenko64-68
-
ATRIAL FIBRILLATION DETECTION ON ELECTROCARDIOGRAMS WITH CONVOLUTIONAL NEURAL NETWORKS
Viktor Kifer, Natalia Zagorodna, Olena Hevko69-73
-
THE CONCEPT OF A FLYING ELECTROMAGNETIC FIELD MEASURING PLATFORM
Sławomir Szymaniec, Sławomir Szymocha, Łukasz Miszuda74-77
-
LOW COST SOLAR THERMOELECTRIC WATER FLOATING DEVICE TO SUPPLY MEASUREMENT PLATFORM
Andrzej Nowrot, Monika Mikołajczyk, Anna Manowska, Joachim Pielot, Antoni Wojaczek78-82
-
IMPROVING THE DYNAMICS OF AN INVERTER-BASED PV GENERATOR DURING LOAD DUMPS
Łukasz Kwaśny83-86
-
MEASUREMENT SYSTEMS FOR THE ENERGY PRODUCED BY THE PHOTOVOLTAIC SYSTEM AND CONSUMED BY THE BUILDING OF THE LUBLIN SCIENCE AND TECHNOLOGY PARK
Arkadiusz Małek87-92
-
DESIGN, CONSTRUCTION AND AUTOMATIC CONTROL SYSTEM OF SINGLE-STAGE SIX-BED ADSORPTION HEAT PUMP
Katarzyna Zwarycz-Makles, Sławomir Jaszczak93-98
Archives
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
-
Vol. 8 No. 4
2018-12-16 16
-
Vol. 8 No. 3
2018-09-25 16
-
Vol. 8 No. 2
2018-05-30 18
-
Vol. 8 No. 1
2018-02-28 18
-
Vol. 7 No. 4
2017-12-21 23
-
Vol. 7 No. 3
2017-09-30 24
-
Vol. 7 No. 2
2017-06-30 27
-
Vol. 7 No. 1
2017-03-03 33
Main Article Content
DOI
Authors
marcin.kowalski@wsei.lublin.pl
Piotr.Bednarczuk@wsei.lublin.pl
Abstract
The article presents a solution based on a cyber-physical system in which data collected from measuring sensors was analysed for prediction in the production process control system. The presented technology was based on intelligent sensors as part of the solution for Industry 4.0. The main purpose of the work is to reduce data and select the appropriate covariate to optimise modelling of defects using the Cox model for a specific mechanical system. The reliability of machines and devices in the production process is a condition for ensuring continuity of production. Predicting damage, especially its movement, gives the ability to monitor the current state of the machine. In a broader perspective, this enables streamlining the production process, service planning or control. This ensures production continuity and optimal performance. The presented model is a regressive survival analysis model that allows you to calculate the probability of failure occurring over a given period of time.
Keywords:
References
Bergweiler S.: Intelligent Manufacturing based on Self-Monitoring Cyber-Physical Systems. UBICOMM 2015 The Ninth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, 2015.
Chen B., Abascal J., Soleimani M.: Electrical Resistance Tomography for Visualization of Moving Objects Using a Spatiotemporal Total Variation Regularization Algorithm. Sensors 18/2018, 1704. DOI: https://doi.org/10.3390/s18061704
Cox D., Snell E.: Ageneral definition of residuals. Journal of the Royal Statistical Society Series B (Methodological) 30/1968, 248–275. DOI: https://doi.org/10.1111/j.2517-6161.1968.tb00724.x
Deszyńska A.: Modele hazardów proporcjonalnych Coxa. Matematyka stosowana 13(54)/2011.
Dušek J., Hladký D., Mikulka J.: Electrical Impedance Tomography Methods and Algorithms Processed with a GPU. PIERS Proceedings 2017, 1710–1714. DOI: https://doi.org/10.1109/PIERS.2017.8262025
Goetzke-Pala A., Hoła A., Sadowski Ł.: A non-destructive method of the evaluation of the moisture in saline brick walls using artificial neural networks. Archives of Civil and Mechanical Engineering 18(4)/2018, 1729–1742. DOI: https://doi.org/10.1016/j.acme.2018.07.004
Grudzien K., Romanowski A., Chaniecki Z., Niedostatkiewicz M., Sankowski D.: Description of the silo flow and bulk solid pulsation detection using ECT. Flow Measurement and Instrumentation 21(3)/2010, 198–206. DOI: https://doi.org/10.1016/j.flowmeasinst.2009.12.006
Kozlowski E., Mazurkiewicz D., Kowalska B., et al.: Binary Linear Programming as a Decision-Making Aid for Water Intake Operators. 1st International Conference on Intelligent Systems in Production Engineering and Maintenance (ISPEM), Wrocław 2017. DOI: https://doi.org/10.1007/978-3-319-64465-3_20
Korzeniewska E., Walczak M., Rymaszewski J.: Elements of Elastic Electronics Created on Textile Substrate. Proceedings of the 24th International Conference Mixed Design of Integrated Circuits and Systems – MIXDES 2017, 2017, 447–454. DOI: https://doi.org/10.23919/MIXDES.2017.8005250
Kowalska A., Banasiak R., Romanowski A., Sankowski D.: Article 3D-Printed Multilayer Sensor Structure for Electrical Capacitance Tomography. Sensors 19/2019, 3416. DOI: https://doi.org/10.3390/s19153416
Kryszyn J., Smolik W.: Toolbox for 3d modelling and image reconstruction in electrical capacitance tomography. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOŚ 7(1)/2017, 137–145.
Kozłowski E., Mazurkiewicz D., Żabiński T., Prucnal S., Sęp J.: Assessment model of cutting tool condition for real-time supervision system. Eksploatacja i Niezawodność – Maintenance and Reliability 21(4)/2019, 679–685. DOI: https://doi.org/10.17531/ein.2019.4.18
Monostori L. Cyber-physical production systems: Roots, expectations and R&D challenges. Procedia CIRP 17, 2014, 9–13. DOI: https://doi.org/10.1016/j.procir.2014.03.115
Mosorov V., Grudzień K., Sankowski D.: Flow velocity measurement methods using electrical capacitance tomography. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOŚ, 7(1)/2017, 30–36. DOI: https://doi.org/10.5604/01.3001.0010.4578
Qian F., Xu G., Zhang L., Dong H.: Design of Hybrid NC Control System for Automatic Line. International Journal of Hybrid Information Technology 8(4)/2015, 185–192. DOI: https://doi.org/10.14257/ijhit.2015.8.4.21
Repta D., Sacala I., Moisescu M., Stanescu A.: Towards the development of a Cyber-Intelligent Enterprise System Architecture. 19th World Congress The International Federation of Automatic Control, Cape Town 2014. DOI: https://doi.org/10.3182/20140824-6-ZA-1003.01681
Rymarczyk, T., Przysucha, B.: Intelligent sensor platform for multi-source data analysis for monitoring and control of technological systems. Applications of Electromagnetics in Modern Engineering and Medicine, PTZE 2019, 171–175. DOI: https://doi.org/10.23919/PTZE.2019.8781710
Rymarczyk T., Filipowicz S.F., Sikora J.: Level Set Method for Inverse Problem Solution In Electrical Impedance Tomography. Journal Proceedings of the XII International Conference on Electrical Bioimpedance & V Electrical Impedance Tomography, 2004, 519–522.
Rymarczyk T., Kłosowski G.: Innovative methods of neural reconstruction for tomographic images in maintenance of tank industrial reactors. Eksploatacja i Niezawodność – Maintenance and Reliability 21(2)/2019, 261–267. DOI: https://doi.org/10.17531/ein.2019.2.10
Rymarczyk T., Kozłowski E., Kłosowski G., Niderla K.: Logistic Regression for Machine Learning in Process Tomography. Sensors 19/2019, 3400. DOI: https://doi.org/10.3390/s19153400
Rymarczyk T.: Characterization of the shape of unknown objects by inverse numerical methods. Przegląd Elektrotechniczny 88(7b)/2012, 138–140.
Rymarczyk T., Adamkiewicz P., Polakowski K., Sikora J.: Effective ultrasound and radio tomography imaging algorithm for two-dimensional problems. Przegląd Elektrotechniczny 94(6)/2018, 62–69.
Rymarczyk T., Szumowski K., Adamkiewicz P., Tchórzewski P., Sikora J.: Moisture Wall Inspection Using Electrical Tomography Measurements. Przegląd Elektrotechniczny 94/2018, 97–100.
Schoenfeld D.: Partial residuals for the proportional hazards regression model, Biometrika 69/1980, 239–241. DOI: https://doi.org/10.1093/biomet/69.1.239
Xue Y., Schifano E. D.: Diagnostic for Cox model, Communications for statistical Applications and Methods 24(6)/2017, 583–604. DOI: https://doi.org/10.29220/CSAM.2017.24.6.583
Article Details
Abstract views: 537
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
