IMPROVING PARAMETERS OF V-SUPPORT VECTOR REGRESSION WITH FEATURE SELECTION IN PARALLEL BY USING QUASI-OPPOSITIONAL AND HARRIS HAWKS OPTIMIZATION ALGORITHM
Article Sidebar
Open full text
Issue Vol. 14 No. 2 (2024)
-
HAND MOVEMENT DISORDERS TRACKING BY SMARTPHONE BASED ON COMPUTER VISION METHODS
Marko Andrushchenko, Karina Selivanova, Oleg Avrunin, Dmytro Palii, Sergii Tymchyk , Dana Turlykozhayeva5-10
-
MEANS OF ANALYZING PARAMETERS OF SPEECH SIGNAL TRANSMISSION AND REPRODUCTION
Olexiy Azarov, Larysa Azarova, Iurii Krak, Leonid Krupelnitskyi, Anzhelika Azarova, Veronika Azarova11-16
-
CONCEPT AND VALIDATION OF A SYSTEM FOR RECORDING VIBROACOUSTIC SIGNALS OF THE KNEE JOINT
Robert Karpiński, Anna Machrowska, Marcin Maciejewski, Józef Jonak, Przemysław Krakowski17-21
-
A COYOTE-INSPIRED APPROACH FOR SYSTEMIC LUPUS ERYTHEMATOSUS PREDICTION USING NEURAL NETWORKS
Sobhana Mummaneni, Pragathi Dodda, Naga Deepika Ginjupalli22-27
-
CHANGE OF FREQUENCY CHARACTERISTICS OF A FILTER USING A REACTOR WITH SMOOTHLY ADJUSTABLE INDUCTANCE
Vasyl Hudym, Vira Kosovska, Huthaifa Al_Issa, Taras Shchur, Oleksandr Miroshnyk, Sławomir Ziarkowski28-33
-
STUDY OF STARTING MODES OF SINGLE-PHASE INDUCTION MOTORS WHEN CHANGING THE PARAMETERS OF THE STATOR WINDINGS, PHASE-SHIFTING CAPACITOR AND SUPPLY VOLTAGE
Suad Omar Aldaikh, Mohannad O. Rawashdeh, Lina H. Hussienat, Mohamed Qawaqzeh, Oleksiy Iegorov, Olga Iegorova, Mykola Kundenko, Dmytro Danylchenko, Oleksandr Miroshnyk, Taras Shchur34-41
-
EVALUATION OF THE ENERGY CHARACTERISTICS OF THE INFRARED DRYING PROCESS OF RAPESEED AND SOYBEANS WITH A VIBRATING WAVE DRIVER
Igor Palamarchuk, Vladyslav Palamarchuk, Marija Zheplinska42-46
-
JUSTIFICATION OF THE POSSIBILITY OF BUILDING AN INTEGRATED ULTRASONIC MEASURING TRANSDUCER OF NATURAL GAS CONSUMPTION
Yosyp Bilynsky, Аndrii Stetsenko, Konstantin Ogorodnik47-50
-
NUMERICAL STUDY OF THE POSSIBILITY OF USING ADHESIVE JOINTS FOR INDIRECT MEASUREMENTS FOR STRESS DISTRIBUTION
Piotr Kisała, Paweł Wiśniewski51-55
-
A MODIFIED METHOD OF SPECTRAL ANALYSIS OF RADIO SIGNALS USING THE OPERATOR APPROACH FOR THE FOURIER TRANSFORM
Valentyn Sobchuk, Serhii Laptiev, Tetiana Laptievа, Oleg Barabash, Oleksandr Drobyk, Andrii Sobchuk56-61
-
ITERATIVE DECODING OF SHORT LOW-DENSITY PARITY-CHECK CODES BASED ON DIFFERENTIAL EVOLUTION
Mykola Shtompel, Sergii Prykhodko62-65
-
A REVIEW OF GENERATIVE ADVERSARIAL NETWORKS FOR SECURITY APPLICATIONS
Swarajya Madhuri Rayavarapu, Shanmukha Prasanthi Tammineni, Sasibhushana Rao Gottapu, Aruna Singam66-70
-
IoT FOR PREDICTIVE MAINTENANCE OF CRITICAL MEDICAL EQUIPMENT IN A HOSPITAL STRUCTURE
Maroua Guissi, My Hachem El Yousfi Alaoui, Larbi Belarbi, Asma Chaik71-76
-
APPLICATION OF RESNET-152 NEURAL NETWORKS TO ANALYZE IMAGES FROM UAV FOR FIRE DETECTION
Nataliia Stelmakh, Svitlana Mandrovska, Roman Galagan77-82
-
IDENTIFICATION OF SALT-AFFECTED SOILS IN THE COASTAL AREA OF KRISHNA DISTRICT, ANDHRA PRADESH, USING REMOTE SENSING DATA AND MACHINE LEARNING TECHNIQUES
Govada Anuradha, Venkata Sai Sankara Vineeth Chivukula, Naga Ganesh Kothangundla83-88
-
PERFORMANCE EVALUATION FOR FACE MASK DETECTION BASED ON MULT MODIFICATION OF YOLOV8 ARCHITECTURE
Muna AL-Shamdeen, Fawziya Mahmood Ramo89-95
-
EVALUATION OF ENGINEERING SOLUTIONS IN THE DEVELOPMENT OF THE PROCUREMENT SECTION FOR THE METAL CONSTRUCTION WORKSHOP
Bogdan Palchevskyi, Lubov Krestyanpol96-100
-
EVALUATING THE PERFORMANCE OF BITCOIN PRICE FORECASTING USING MACHINE LEARNING TECHNIQUES ON HISTORICAL DATA
Mamun Ahmed, Sayma Alam Suha, Fahamida Hossain Mahi, Forhad Uddin Ahmed101-108
-
METHODS OF INTELLIGENT DATA ANALYSIS USING NEURAL NETWORKS IN DIAGNOSIS
Volodymyr Lyfar, Olena Lyfar, Volodymyr Zynchenko109-112
-
IMPROVING PARAMETERS OF V-SUPPORT VECTOR REGRESSION WITH FEATURE SELECTION IN PARALLEL BY USING QUASI-OPPOSITIONAL AND HARRIS HAWKS OPTIMIZATION ALGORITHM
Omar Mohammed Ismael, Omar Saber Qasim, Zakariya Yahya Algamal113-118
-
AN ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM WITH A BOUND ADJUSTMENT STRATEGY FOR SOLVING NONLINEAR PARAMETER IDENTIFICATION PROBLEMS
Watchara Wongsa, Pikul Puphasuk, Jeerayut Wetweerapong119-126
-
MODELING THE CHOICE OF AN ONLINE COURSE FOR INFORMATION HYGIENE SKILLS USING THE SAATY METHOD
Yuliia Rudenko, Karen Ahadzhanov-Honsales, Svitlana Ahadzhanova, Alla Batalova, Olena Bieliaieva, Artem Yurchenko, Olena Semenikhina127-132
-
REVIEW OF THE ACHIEVEMENTS OF EMPLOYEES OF THE LUBLIN UNIVERSITY OF TECHNOLOGY IN THE FIELD OF FUZZY SET UTILIZATION
Maciej Celiński, Adam Kiersztyn133-140
-
MODELING ROBOTECHNICAL MECHATRONIC COMPLEXES IN V-REP PROGRAM
Laura Yesmakhanova141-148
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
Main Article Content
DOI
Authors
Omar_muhammed84@nan.epedu.gov.iq
zakariya.algamal@uomosul.edu.iq
Abstract
Numerous real-world problems have been addressed using support vector regression, particularly v-support vector regression (v-SVR), but some parameters need to be manually changed. Furthermore, v-SVR does not support feature selection. Techniques inspired from nature were used to identify features and hyperparameter estimation. The quasi-oppositional Harris hawks optimization method (QOBL-HHOA) is introduced in this research to embedding the feature selection and optimize the hyper-parameter of the v-SVR at a same time. Results from experiments performed using four datasets. It has been demonstrated that, in terms of prediction, the number of features that may be chosen, and execution time, the suggested algorithm performs better than cross-validation and grid search methods. When compared to other nature-inspired algorithms, the experimental results of the QOBL-HHOA show its efficacy in improving prediction accuracy and processing time. It demonstrates QOBL-ability as well. By searching for the optimal hyper-parameter values, HHOAs can locate the features that are most helpful for prediction tasks. As a result, the QOBL-HHOA algorithm may be more appropriate than other algorithms for identifying the data link between the features of the input and the desired variable. Whereas, the numerical results showed superiority this method on these methods, for example, mean square error of QOBL-HHOA method results (2.05E-07) with influenza neuraminidase data set was the better than the others. For making predictions in other real-world situations, this is incredibly helpful.
Keywords:
References
Al-Fakih, A. et al.: A QSAR model for predicting antidiabetic activity of dipeptidyl peptidase-IV inhibitors by enhanced binary gravitational search algorithm. SAR and QSAR in Environmental Research 30(6), 2019, 403–416. DOI: https://doi.org/10.1080/1062936X.2019.1607899
Al-Fakih A. et al.: QSAR classification model for diverse series of antifungal agents based on improved binary differential search algorithm. SAR and QSAR in Environmental Research 30(2), 2019, 131–143. DOI: https://doi.org/10.1080/1062936X.2019.1568298
Algamal Z. Y. et al.: High‐dimensional QSAR prediction of anticancer potency of imidazo [4, 5‐b] pyridine derivatives using adjusted adaptive LASSO. Journal of Chemometrics 29(10), 2015, 547–556. DOI: https://doi.org/10.1002/cem.2741
Al-Thanoon N. A., Qasim O. S., Algamal Z. Y.: A new hybrid firefly algorithm and particle swarm optimization for tuning parameter estimation in penalized support vector machine with application in chemometrics. Chemometrics and Intelligent Laboratory Systems 184, 2019, 142–152. DOI: https://doi.org/10.1016/j.chemolab.2018.12.003
Al-Thanoon N. A., Qasim O. S., Algamal Z. Y.: Improving nature-inspired algorithms for feature selection. Journal of Ambient Intelligence and Humanized Computing 2022, 1–11.
Al-Thanoon N. A., Qasim O. S., Algamal Z. Y.: Tuning parameter estimation in SCAD-support vector machine using firefly algorithm with application in gene selection and cancer classification. Comput Biol Med 103, 2018, 262–268. DOI: https://doi.org/10.1016/j.compbiomed.2018.10.034
Al-Thanoon N. A., Qasim O. S., Algamal Z. Y.: Variable selection in gamma regression model using binary gray wolf optimization algorithm. Journal of Physics: Conference Series. 2020. DOI: https://doi.org/10.1088/1742-6596/1591/1/012036
Cao G., Wu L.: Support vector regression with fruit fly optimization algorithm for seasonal electricity consumption forecasting. Energy 115, 2016, 734–745. DOI: https://doi.org/10.1016/j.energy.2016.09.065
Cheng C.-T. et al.: Optimizing Hydropower Reservoir Operation Using Hybrid Genetic Algorithm and Chaos. Water Resources Management 22(7), 2007, 895–909. DOI: https://doi.org/10.1007/s11269-007-9200-1
Cheng J., Qian J., Guo Y.-N.: Adaptive chaotic cultural algorithm for hyperparameters selection of support vector regression. International Conference on Intelligent Computing. Springer 2009. DOI: https://doi.org/10.1007/978-3-642-04020-7_31
Cherkassky V., Ma Y.: Practical selection of SVM parameters and noise estimation for SVM regression. Neural networks 17(1), 2004, 113–126. DOI: https://doi.org/10.1016/S0893-6080(03)00169-2
Chou J.-S., Pham A.-D.: Nature-inspired metaheuristic optimization in least squares support vector regression for obtaining bridge scour information. Information Sciences 399, 2017, 64–80. DOI: https://doi.org/10.1016/j.ins.2017.02.051
Chuang C.-C., Lee Z.-J.: Hybrid robust support vector machines for regression with outliers. Applied Soft Computing 11(1), 2011, 64–72. DOI: https://doi.org/10.1016/j.asoc.2009.10.017
Fan Q., Chen Z., Xia Z.: A novel quasi-reflected Harris hawks optimization algorithm for global optimization problems. Soft Computing, 2020. DOI: https://doi.org/10.1007/s00500-020-04834-7
Ganesh N. et al.: Efficient feature selection using weighted superposition attraction optimization algorithm. Applied Sciences 13(5), 2023, 3223. DOI: https://doi.org/10.3390/app13053223
Golilarz N. A. et al.: A New Automatic Method for Control Chart Patterns Recognition Based on ConvNet and Harris Hawks Meta Heuristic Optimization Algorithm. IEEE Access 7, 2019, 149398–149405. DOI: https://doi.org/10.1109/ACCESS.2019.2945596
Heidari A. A. et al.: Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems 97, 2019, 849–872. DOI: https://doi.org/10.1016/j.future.2019.02.028
Hong W.-C. et al.: SVR with hybrid chaotic genetic algorithms for tourism demand forecasting. Applied Soft Computing 11(2), 2011, 1881–1890. DOI: https://doi.org/10.1016/j.asoc.2010.06.003
Houssein E. H. et al.: Optimal Sink Node Placement in Large Scale Wireless Sensor Networks Based on Harris’ Hawk Optimization Algorithm. IEEE Access 8, 2020, 19381–19397. DOI: https://doi.org/10.1109/ACCESS.2020.2968981
Huang C.-F.: A hybrid stock selection model using genetic algorithms and support vector regression. Applied Soft Computing 12(2), 2012, 807–818. DOI: https://doi.org/10.1016/j.asoc.2011.10.009
Ismael O. M., Qasim O.S., Algamal Z.Y.: A new adaptive algorithm for v-support vector regression with feature selection using Harris hawks optimization algorithm. in Journal of Physics: Conference Series, 2021. DOI: https://doi.org/10.1088/1742-6596/1897/1/012057
Ito K., Nakano R..: Optimizing support vector regression hyperparameters based on cross-validation. Proceedings of the International Joint Conference on Neural Networks, 2003.
Kaneko H., Funatsu K.: Fast optimization of hyperparameters for support vector regression models with highly predictive ability. Chemometrics and Intelligent Laboratory Systems 142, 2015, 64–69. DOI: https://doi.org/10.1016/j.chemolab.2015.01.001
Kazem A. et al.: Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Applied Soft Computing 13(2), 2013, 947–958. DOI: https://doi.org/10.1016/j.asoc.2012.09.024
Kong D. et al.: Tool wear monitoring based on kernel principal component analysis and v-support vector regression. The International Journal of Advanced Manufacturing Technology 89(1–4), 2016, 175–190. DOI: https://doi.org/10.1007/s00170-016-9070-x
Laref R. et al.: On the optimization of the support vector machine regression hyperparameters setting for gas sensors array applications. Chemometrics and Intelligent Laboratory Systems 184, 2019, 22–27. DOI: https://doi.org/10.1016/j.chemolab.2018.11.011
Li S., Fang H., Liu X.: Parameter optimization of support vector regression based on sine cosine algorithm. Expert Systems with Applications 91, 2018, 63–77. DOI: https://doi.org/10.1016/j.eswa.2017.08.038
Menesy S. A. et al.: Developing and Applying Chaotic Harris Hawks Optimization Technique for Extracting Parameters of Several Proton Exchange Membrane Fuel Cell Stacks. IEEE Access 8, 2020, 1146–1159. DOI: https://doi.org/10.1109/ACCESS.2019.2961811
Nait Amar M., Zeraibi N.: Application of hybrid support vector regression artificial bee colony for prediction of MMP in CO2-EOR process. Petroleum, 2018.
Naveh I. M. H. et al.: A Quasi-Oppositional Method for Output Tracking Control by Swarm-Based MPID Controller on AC/HVDC Interconnected Systems With Virtual Inertia Emulation. IEEE Access 9, 2021, 77572–77598. DOI: https://doi.org/10.1109/ACCESS.2021.3080704
Priyadarshini J. et al.: Analyzing physics-inspired metaheuristic algorithms in feature selection with K-nearest-neighbor. Applied Sciences 13(2), 2023, 906. DOI: https://doi.org/10.3390/app13020906
Qu C. et al.: Harris Hawks optimization with information exchange. Applied Mathematical Modelling 84, 2020, 52–75. DOI: https://doi.org/10.1016/j.apm.2020.03.024
Rahnamayan S., Tizhoosh H. R., Salama M. M.: Quasi-oppositional differential evolution. IEEE congress on evolutionary computation, 2007. IEEE. regression with outliers. Applied Soft Computing 11(1), 2011, 64–72. DOI: https://doi.org/10.1109/CEC.2007.4424748
Schölkopf B. et al.: New support vector algorithms. Neural computation 12(5), 2000, 1207–1245. DOI: https://doi.org/10.1162/089976600300015565
Shaik K. et al.: Big Data Analytics Framework Using Squirrel Search Optimized Gradient Boosted Decision Tree for Heart Disease Diagnosis. Applied Sciences 13(9), 2023, 5236. DOI: https://doi.org/10.3390/app13095236
Shehabeldeen T. A. et al.: Modeling of friction stir welding process using adaptive neuro-fuzzy inference system integrated with harris hawks optimizer. Journal of Materials Research and Technology 8(6), 2019, 5882–5892. DOI: https://doi.org/10.1016/j.jmrt.2019.09.060
Tizhoosh H. R.: Opposition-based learning: a new scheme for machine intelligence. in International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce – CIMCA-IAWTIC'06, 2005.
Too A., Mohd S..: A New Quadratic Binary Harris Hawk Optimization for Feature Selection. Electronics 8(10), 2019, 1130. DOI: https://doi.org/10.3390/electronics8101130
Tsirikoglou P. et al.: A hyperparameters selection technique for support vector regression models. Applied Soft Computing 61, 2017, 139–148. DOI: https://doi.org/10.1016/j.asoc.2017.07.017
Üstün B. et al.: Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization. Analytica Chimica Acta 544(1–2), 2005, 292–305. DOI: https://doi.org/10.1016/j.aca.2004.12.024
Vapnik V. N.: An overview of statistical learning theory. IEEE transactions on neural networks 10(5), 1999, 988–999. DOI: https://doi.org/10.1109/72.788640
Wu C.-H., Tzeng G.-H., Lin R.-H.: A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression. Expert Systems with Applications 36(3), 2009, 4725–4735. DOI: https://doi.org/10.1016/j.eswa.2008.06.046
Xu S. et al.: An improved variable selection method for support vector regression in NIR spectral modeling. Journal of Process Control 67, 2018, 83–93. DOI: https://doi.org/10.1016/j.jprocont.2017.06.001
Zhang J. et al.: Optimization enhanced genetic algorithm-support vector regression for the prediction of compound retention indices in gas chromatography. Neurocomputing 240, 2017, 183–190. DOI: https://doi.org/10.1016/j.neucom.2016.11.070
Zhao Y.-P., Sun J.-G.: Robust truncated support vector regression. Expert Systems with Applications 37(7), 2010, 5126–5133. DOI: https://doi.org/10.1016/j.eswa.2009.12.082
Article Details
Abstract views: 295

