METHODS OF INTELLIGENT DATA ANALYSIS USING NEURAL NETWORKS IN DIAGNOSIS
Article Sidebar
Open full text
Issue Vol. 14 No. 2 (2024)
-
HAND MOVEMENT DISORDERS TRACKING BY SMARTPHONE BASED ON COMPUTER VISION METHODS
Marko Andrushchenko, Karina Selivanova, Oleg Avrunin, Dmytro Palii, Sergii Tymchyk , Dana Turlykozhayeva5-10
-
MEANS OF ANALYZING PARAMETERS OF SPEECH SIGNAL TRANSMISSION AND REPRODUCTION
Olexiy Azarov, Larysa Azarova, Iurii Krak, Leonid Krupelnitskyi, Anzhelika Azarova, Veronika Azarova11-16
-
CONCEPT AND VALIDATION OF A SYSTEM FOR RECORDING VIBROACOUSTIC SIGNALS OF THE KNEE JOINT
Robert Karpiński, Anna Machrowska, Marcin Maciejewski, Józef Jonak, Przemysław Krakowski17-21
-
A COYOTE-INSPIRED APPROACH FOR SYSTEMIC LUPUS ERYTHEMATOSUS PREDICTION USING NEURAL NETWORKS
Sobhana Mummaneni, Pragathi Dodda, Naga Deepika Ginjupalli22-27
-
CHANGE OF FREQUENCY CHARACTERISTICS OF A FILTER USING A REACTOR WITH SMOOTHLY ADJUSTABLE INDUCTANCE
Vasyl Hudym, Vira Kosovska, Huthaifa Al_Issa, Taras Shchur, Oleksandr Miroshnyk, Sławomir Ziarkowski28-33
-
STUDY OF STARTING MODES OF SINGLE-PHASE INDUCTION MOTORS WHEN CHANGING THE PARAMETERS OF THE STATOR WINDINGS, PHASE-SHIFTING CAPACITOR AND SUPPLY VOLTAGE
Suad Omar Aldaikh, Mohannad O. Rawashdeh, Lina H. Hussienat, Mohamed Qawaqzeh, Oleksiy Iegorov, Olga Iegorova, Mykola Kundenko, Dmytro Danylchenko, Oleksandr Miroshnyk, Taras Shchur34-41
-
EVALUATION OF THE ENERGY CHARACTERISTICS OF THE INFRARED DRYING PROCESS OF RAPESEED AND SOYBEANS WITH A VIBRATING WAVE DRIVER
Igor Palamarchuk, Vladyslav Palamarchuk, Marija Zheplinska42-46
-
JUSTIFICATION OF THE POSSIBILITY OF BUILDING AN INTEGRATED ULTRASONIC MEASURING TRANSDUCER OF NATURAL GAS CONSUMPTION
Yosyp Bilynsky, Аndrii Stetsenko, Konstantin Ogorodnik47-50
-
NUMERICAL STUDY OF THE POSSIBILITY OF USING ADHESIVE JOINTS FOR INDIRECT MEASUREMENTS FOR STRESS DISTRIBUTION
Piotr Kisała, Paweł Wiśniewski51-55
-
A MODIFIED METHOD OF SPECTRAL ANALYSIS OF RADIO SIGNALS USING THE OPERATOR APPROACH FOR THE FOURIER TRANSFORM
Valentyn Sobchuk, Serhii Laptiev, Tetiana Laptievа, Oleg Barabash, Oleksandr Drobyk, Andrii Sobchuk56-61
-
ITERATIVE DECODING OF SHORT LOW-DENSITY PARITY-CHECK CODES BASED ON DIFFERENTIAL EVOLUTION
Mykola Shtompel, Sergii Prykhodko62-65
-
A REVIEW OF GENERATIVE ADVERSARIAL NETWORKS FOR SECURITY APPLICATIONS
Swarajya Madhuri Rayavarapu, Shanmukha Prasanthi Tammineni, Sasibhushana Rao Gottapu, Aruna Singam66-70
-
IoT FOR PREDICTIVE MAINTENANCE OF CRITICAL MEDICAL EQUIPMENT IN A HOSPITAL STRUCTURE
Maroua Guissi, My Hachem El Yousfi Alaoui, Larbi Belarbi, Asma Chaik71-76
-
APPLICATION OF RESNET-152 NEURAL NETWORKS TO ANALYZE IMAGES FROM UAV FOR FIRE DETECTION
Nataliia Stelmakh, Svitlana Mandrovska, Roman Galagan77-82
-
IDENTIFICATION OF SALT-AFFECTED SOILS IN THE COASTAL AREA OF KRISHNA DISTRICT, ANDHRA PRADESH, USING REMOTE SENSING DATA AND MACHINE LEARNING TECHNIQUES
Govada Anuradha, Venkata Sai Sankara Vineeth Chivukula, Naga Ganesh Kothangundla83-88
-
PERFORMANCE EVALUATION FOR FACE MASK DETECTION BASED ON MULT MODIFICATION OF YOLOV8 ARCHITECTURE
Muna AL-Shamdeen, Fawziya Mahmood Ramo89-95
-
EVALUATION OF ENGINEERING SOLUTIONS IN THE DEVELOPMENT OF THE PROCUREMENT SECTION FOR THE METAL CONSTRUCTION WORKSHOP
Bogdan Palchevskyi, Lubov Krestyanpol96-100
-
EVALUATING THE PERFORMANCE OF BITCOIN PRICE FORECASTING USING MACHINE LEARNING TECHNIQUES ON HISTORICAL DATA
Mamun Ahmed, Sayma Alam Suha, Fahamida Hossain Mahi, Forhad Uddin Ahmed101-108
-
METHODS OF INTELLIGENT DATA ANALYSIS USING NEURAL NETWORKS IN DIAGNOSIS
Volodymyr Lyfar, Olena Lyfar, Volodymyr Zynchenko109-112
-
IMPROVING PARAMETERS OF V-SUPPORT VECTOR REGRESSION WITH FEATURE SELECTION IN PARALLEL BY USING QUASI-OPPOSITIONAL AND HARRIS HAWKS OPTIMIZATION ALGORITHM
Omar Mohammed Ismael, Omar Saber Qasim, Zakariya Yahya Algamal113-118
-
AN ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM WITH A BOUND ADJUSTMENT STRATEGY FOR SOLVING NONLINEAR PARAMETER IDENTIFICATION PROBLEMS
Watchara Wongsa, Pikul Puphasuk, Jeerayut Wetweerapong119-126
-
MODELING THE CHOICE OF AN ONLINE COURSE FOR INFORMATION HYGIENE SKILLS USING THE SAATY METHOD
Yuliia Rudenko, Karen Ahadzhanov-Honsales, Svitlana Ahadzhanova, Alla Batalova, Olena Bieliaieva, Artem Yurchenko, Olena Semenikhina127-132
-
REVIEW OF THE ACHIEVEMENTS OF EMPLOYEES OF THE LUBLIN UNIVERSITY OF TECHNOLOGY IN THE FIELD OF FUZZY SET UTILIZATION
Maciej Celiński, Adam Kiersztyn133-140
-
MODELING ROBOTECHNICAL MECHATRONIC COMPLEXES IN V-REP PROGRAM
Laura Yesmakhanova141-148
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
Main Article Content
DOI
Authors
Abstract
The considered methods make it possible to develop the structure of diagnostic systems based on neural networks and implement decision support systems in classification diagnostic problems. The study uses general special methods of data mining and the principles of constructing an artificial intelligence system based on neural networks. The problems that arise when filling knowledge bases and training neural networks are highlighted. Methods for developing models of intelligent data processing for diagnostic purposes based on neural networks are proposed. The authors developed and verified an activation function for intermediate neural levels, which allows the use of weighting coefficients as probabilities of diagnostic processes and avoids the problem of local minima when using gradient descent methods. The authors identified special problems that may arise during the practical implementation of a decision support system and the development of knowledge bases. An original activation function for intermediate layers is proposed, obtained based on the modernization of the Gaussian error function. The experience of using the considered methods and models allows us to implement artificial intelligence diagnostic systems in various classification problems.
Keywords:
References
Balogh E. P. et al. (eds.): Improving Diagnosis in Health Care. National Academies Press (US), Washington 2015 [https://doi.org/10.17226/21794]. DOI: https://doi.org/10.17226/21794
Caliskan A., Yuksel M. E.: Classification of Coronary Artery Disease Data Sets by Using a Deep Neural Network. Euro Biotech J 1(4), 2017, 271–277. DOI: https://doi.org/10.24190/ISSN2564-615X/2017/04.03
Checcucci E.: Applications of neural networks in urology: a systematic review. Current Opinion in Urology 30(6), 2020, 788–807. DOI: https://doi.org/10.1097/MOU.0000000000000814
Glover E.: Artificial Intelligence [https://builtin.com/artificial-intelligence] (available: 28.01.2022).
Kharlamova N. V. et al.: The use of artificial intelligence to diagnose diseases and predict their outcomes in newborns. Russian Bulletin of Perinatology and Pediatrics, 2023, 108–114. DOI: https://doi.org/10.21508/1027-4065-2023-68-4-108-XX
Lins A.J.C.C. et al.: Using Artificial Neural Networks to Select the Parameters for the Prognostic of Mild Cognitive Impairment and Dementia in Elderly Individuals. Computer methods and programs in biomedicine 152, 2017, 93–104 [https://doi.org/10.1016/j.cmpb.2017.09.013]. DOI: https://doi.org/10.1016/j.cmpb.2017.09.013
Mantzaris D. et al.: Artificial Neural Networks for Estimation of Dementias Types. Artif Intell Appl 1(1), 2014, 74–82. DOI: https://doi.org/10.15764/AIA.2014.01006
Mirbabaie M., Stieglitz M.: Artificial intelligence in disease diagnostics: A critical review and classification on the current state of research guiding future direction. Health Technol. 11, 2021, 693–731. DOI: https://doi.org/10.1007/s12553-021-00555-5
Rasmy L. et al.: Recurrent neural network models (CovRNN) for predicting outcomes of patients with COVID-19 on admission to hospital: model development and validation using electronic health record data. Lancet Digit Health 4(6), 2022, e415–e425 [https://doi.org/10.1016/S2589-7500(22)00049-8]. DOI: https://doi.org/10.1016/S2589-7500(22)00049-8
Sanoob M. U. et al.: Artificial Neural Network for Diagnosis of Pancreatic Cancer. IJCI 5(2), 2016, 41–49. DOI: https://doi.org/10.5121/ijci.2016.5205
Sutton R. T., Pincock D., Baumgart D. C.: An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digit. Med. 3(17), 2020. DOI: https://doi.org/10.1038/s41746-020-0221-y
Article Details
Abstract views: 229

