CHANGE OF FREQUENCY CHARACTERISTICS OF A FILTER USING A REACTOR WITH SMOOTHLY ADJUSTABLE INDUCTANCE
Vasyl Hudym
Lviv National Environmental University (Ukraine)
Vira Kosovska
Lviv Polytechnic National University (Ukraine)
https://orcid.org/0000-0001-6627-1856
Huthaifa Al_Issa
Al-Balqa Applied University, Department of Electrical and Electronics Engineering, Al Salt, Jordan (Jordan)
Taras Shchur
shchurtg@gmail.comCyclone Manufacturing Inc, Mississauga (Ukraine)
https://orcid.org/0000-0003-0205-032X
Oleksandr Miroshnyk
State Biotechnological University, Department of Electricity Supply and Energy Management (Ukraine)
https://orcid.org/0000-0002-6144-7573
Sławomir Ziarkowski
Spektrum, Kraków, Poland (Poland)
https://orcid.org/0009-0009-5253-7225
Abstract
Experimental studies of the proposed reactor by the authors were carried out through direct measurements of electrical quantities. Structurally, the reactor is designed as a stator of an electric machine with a single pair of poles and a rotor without windings in the form similar to an elliptical shape with flat sides. The magnitude of the inductance varies by rotating the rotor within the range from zero to ninety degrees, where zero degrees corresponds to the alignment of the stator pole axis with the longer axis of the rotor. The effectiveness of using such a reactor to complement passive controlled harmonic current filters is confirmed by corresponding calculations. It is shown that one controlled filter can replace two or more precisely tuned filters capable of absorbing only certain current harmonics.
Keywords:
electric reactor, smooth adjustment of reactor inductance, passive harmonic and interharmonic current filterReferences
Al_Issa H., Drechny M., Trrad I., Qawaqzeh M., Kuchanskyy V., Rubanenko O., Kudria S., Vasko P., Miroshnyk O., Shchur T.: Assessment of the Effect of Corona Discharge on Synchronous Generator Self-Excitation. Energies 15(6), 2022, 2024 [https://doi.org/10.3390/en15062024].
Google Scholar
Al-Jufout S., Al-Rousan W., Wang C.: Optimization of induction motor equivalent circuit parameter estimation based on manufacturer’s data. Energies, 11(7), 2018, 1792 [https://doi.org/10.3390/en11071792].
Google Scholar
Arkkio A., Rasilo P., Repo A.-K.: Dynamic electromagnetic torque model and parameter estimation for a deep-bar induction machine. IET Electric Power Applications, 2(3), 2008, 183–192 [https://doi.org/10.1049/iet-epa:20070264].
Google Scholar
Boglietti, A., Cavagnino A., Lazzari M.: Computational algorithms for induction motor equivalent circuit parameter determination. Part II: Skin effect and magnetizing characteristics. IEEE Transactions on Industrial Electronics 58(9), 2011, 3734–3740 [https://doi.org/10.1109/TIE.2010.2084975].
Google Scholar
Diaz A., Saltares R., Rodriguez C., Nunez R., Ortiz-Rivera E., Gonzalez-Llorente J.: Induction motor equivalent circuit for dynamic simulation. IEEE International Electric Machines and Drives Conference, May 2009, 858–863 [https://doi.org/10.1109/IEMDC.2009.5075304].
Google Scholar
Gencer C., Gedikpinar M.: A computer-aided educational tool for induction motors. Computer Applications in Engineering Education 20(3), 2012, 503–509 [https://doi.org/10.1002/cae.20418].
Google Scholar
Havrylenko Y., Kholodniak Y., Halko S., Vershkov O., Bondarenko L., Suprun O., Miroshnyk O., Shchur T., Śrutek M., Gackowska M.: Interpolation with Specified Error of a Point Series Belonging to a Monotone Curve. Entropy 23, 2021, 493 [https://doi.org/10.3390/e23050493].
Google Scholar
Havrylenko Y., Kholodniak Y., Halko S., Vershkov O., Miroshnyk O., Suprun O., Dereza O., Shchur T., Śrutek M.: Representation of a Monotone Curve by a Contour with Regular Change in Curvature. Entropy 23, 2021, 923 [https://doi.org/10.3390/e23070923].
Google Scholar
Helonde A., Mankar M.: Identifying three phase induction motor equivalent circuit parameters from nameplate data by different analytical methods. International Journal of Trend in Scientific Research and Development 3(3), 2019, 642–645 [https://doi.org/10.31142/ijtsrd22934].
Google Scholar
Hesari S., Noruziazghandi M., Shojaei A., Neyestani M.: Investigating the intelligent methods of loss minimization in induction motors. Telecommunication Computing Electronics and Control (TELKOMNIKA) 16(3), 2018, 1034–1053 [https://doi.org/10.12928/telkomnika.v16i3.8293].
Google Scholar
Hudym V. I.: Tekhnichni zasoby znyzhennya harmonik v elektropostachal’nykh systemakh. Tekhnichna elektrodynamika 3, 1996, 30–35.
Google Scholar
Hudym V. I., Dovbnia V. I.: Eksperymental’ne doslidzeniya parametriv I kharakterystyk filtrovokho reaktora z dodatkovyu obmotkoyu. Energetitsni ta elektromekhanichni systemy. Visnyk DULP 347, 1998, 11–17.
Google Scholar
Hudym V. I., Jagello A., Mamciarz D.: Elektritsnyy reatstor z plavno rehul’ovanoyu induktyvnistyu. Patent Ukrayiny 118500, 25.01.2019.
Google Scholar
Karaiev O. et al.: Mathematical modelling of the fruit-stone culture seeds calibration process using flat sieves. Acta Technologica Agriculturae 24(3), 2021, 119–123 [https://doi.org/10.2478/ata-2021-0020].
Google Scholar
Khasawneh A. et al.: Optimal Determination Method of the Transposition Steps of An Extra-High Voltage Power Transmission Line. Energies 14, 2021, 6791 [https://doi.org/10.3390/en14206791].
Google Scholar
Maddi Z., Aouzellag D.: Dynamic modelling of induction motor squirrel cage for different shapes of rotor deep bars with estimation of the skin effect. Progress in Electromagnetics Research M 59, 2017, 147–160 [https://doi.org/10.2528/PIERM17060508]
Google Scholar
Miroshnyk O. et al.: Investigation of Smart Grid Operation Modes with Electrical Energy Storage System. Energies 16, 2023, 2638 [https://doi.org/10.3390/en16062638].
Google Scholar
Monjo L., Córcoles F., Pedra J.: Parameter estimation of squirrel‐cage motors with parasitic torques in the torque-slip curve. IET Electric Power Applications 9(5), 2015, 377–387 [https://doi.org/10.1049/iet-epa.2014.0208].
Google Scholar
Nasir B.: An accurate determination of induction machine equivalent circuit components. 1st International Multi-Disciplinary Conference Theme: Sustainable Development and Smart Planning, IMDC-SDSP 2020, Cyperspace, 2020 [https://doi.org/10.4108/eai.28-6-2020.2297941].
Google Scholar
Petrov A. et al.: Adjusted electrical equivalent circuit model of induction motor with broken rotor bars and eccentricity faults. IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, 2017, 58–64 [https://doi.org/10.1109/DEMPED.2017.8062334].
Google Scholar
Pusca R. et al.: Finite element analysis and experimental study of the near-magnetic field for detection of rotor faults in induction motors. Progress in Electromagnetics Research B, 50, 2013, 37–59 [https://doi.org/10.2528/PIERB13021203].
Google Scholar
Qawaqzeh M. Z. et al.: Research of Emergency Modes of Wind Power Plants Using Computer Simulation. Energies 2021, 14, 4780 [https://doi.org/10.3390/en14164780].
Google Scholar
Smith A., Healey R., Williamson S.: A transient induction motor model including saturation and deep bar effect. IEEE Transactions on Energy Conversion 11(1), 1996, 8–15 [https://doi.org/10.1109/60.486570].
Google Scholar
Solar L. et al.: A new exact equivalent circuit of the medium voltage three-phase induction motor. International Journal of Electrical and Computer Engineering 10(6), 2020, 6164–6171 [https://doi.org/10.11591/ijece.v10i6.pp6164-6171].
Google Scholar
Terzioğlu H., Selek M.: Determination of equivalent circuit parameters of induction motors by using heuristic algorithms. Selcuk University Journal of Engineering, Science and Technology 5(2), 2017, 170–182 [https://doi.org/10.15317/Scitech.2017.80].
Google Scholar
Tezcan M. et al.: Investigation of the effects of the equivalent circuit parameters on induction motor torque using three different equivalent circuit models. Matec Web of Conferences 157, 2018 [https://doi.org/10.1051/matecconf/201815701019].
Google Scholar
Zynovkyn V.V., Lyutыy A.P., Balabukha N.S.: Эlektrotekhnolohycheskye rezhymы эnerhoemkykh potrebyteley rezkoperemennыkh nahruzok y ykh vlyyanye na эlektrooborudovanye system эlektrosnabzhenyya. Tekhnichna elektrodynamika 5, 2000, 64–67.
Google Scholar
Authors
Vasyl HudymLviv National Environmental University Ukraine
Authors
Vira KosovskaLviv Polytechnic National University Ukraine
https://orcid.org/0000-0001-6627-1856
Authors
Huthaifa Al_IssaAl-Balqa Applied University, Department of Electrical and Electronics Engineering, Al Salt, Jordan Jordan
Authors
Taras Shchurshchurtg@gmail.com
Cyclone Manufacturing Inc, Mississauga Ukraine
https://orcid.org/0000-0003-0205-032X
Authors
Oleksandr MiroshnykState Biotechnological University, Department of Electricity Supply and Energy Management Ukraine
https://orcid.org/0000-0002-6144-7573
Statistics
Abstract views: 141PDF downloads: 84
Most read articles by the same author(s)
- Sergiy Tymchuk, Oleksiy Piskarev, Oleksandr Miroshnyk, Serhii Halko, Taras Shchur, EXPANSION OF THE ZONE OF PRACTICAL APPLICATION OF PLC WITH PARALLEL ARCHITECTURE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 3 (2022)
- Yuliia Kholodniak, Yevhen Havrylenko, Serhii Halko, Volodymyr Hnatushenko, Olena Suprun, Tatiana Volina, Oleksandr Miroshnyk, Taras Shchur, IMPROVEMENT OF THE ALGORITHM FOR SETTING THE CHARACTERISTICS OF INTERPOLATION MONOTONE CURVE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 4 (2023)
- Suad Omar Aldaikh, Mohannad O. Rawashdeh, Lina H. Hussienat, Mohamed Qawaqzeh, Oleksiy Iegorov, Olga Iegorova, Mykola Kundenko, Dmytro Danylchenko, Oleksandr Miroshnyk, Taras Shchur, STUDY OF STARTING MODES OF SINGLE-PHASE INDUCTION MOTORS WHEN CHANGING THE PARAMETERS OF THE STATOR WINDINGS, PHASE-SHIFTING CAPACITOR AND SUPPLY VOLTAGE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 2 (2024)
- Ibrahim M. Aladwan, Hasan Abdelrazzaq AL Dabbas, Ayman. M. Maqableh, Sayel M. Fayyad, Oleksandr Miroshnyk, Taras Shchur, Vadym Ptashnyk, RESEARCH THE EFFECT OF THE FRACTIONAL NUMBER SLOTS OF POLE ON WIND TURBINE GENERATION USING THE ENHANCED SPOTTED HYENA OPTIMIZATION ALGORITHM , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 3 (2023)