CHANGE OF FREQUENCY CHARACTERISTICS OF A FILTER USING A REACTOR WITH SMOOTHLY ADJUSTABLE INDUCTANCE

Vasyl Hudym


Lviv National Environmental University (Ukraine)

Vira Kosovska


Lviv Polytechnic National University (Ukraine)
https://orcid.org/0000-0001-6627-1856

Huthaifa Al_Issa


Al-Balqa Applied University, Department of Electrical and Electronics Engineering, Al Salt, Jordan (Jordan)

Taras Shchur

shchurtg@gmail.com
Cyclone Manufacturing Inc, Mississauga (Ukraine)
https://orcid.org/0000-0003-0205-032X

Oleksandr Miroshnyk


State Biotechnological University, Department of Electricity Supply and Energy Management (Ukraine)
https://orcid.org/0000-0002-6144-7573

Sławomir Ziarkowski


Spektrum, Kraków, Poland (Poland)
https://orcid.org/0009-0009-5253-7225

Abstract

Experimental studies of the proposed reactor by the authors were carried out through direct measurements of electrical quantities. Structurally, the reactor is designed as a stator of an electric machine with a single pair of poles and a rotor without windings in the form similar to an elliptical shape with flat sides. The magnitude of the inductance varies by rotating the rotor within the range from zero to ninety degrees, where zero degrees corresponds to the alignment of the stator pole axis with the longer axis of the rotor. The effectiveness of using such a reactor to complement passive controlled harmonic current filters is confirmed by corresponding calculations. It is shown that one controlled filter can replace two or more precisely tuned filters capable of absorbing only certain current harmonics.


Keywords:

electric reactor, smooth adjustment of reactor inductance, passive harmonic and interharmonic current filter

Al_Issa H., Drechny M., Trrad I., Qawaqzeh M., Kuchanskyy V., Rubanenko O., Kudria S., Vasko P., Miroshnyk O., Shchur T.: Assessment of the Effect of Corona Discharge on Synchronous Generator Self-Excitation. Energies 15(6), 2022, 2024 [https://doi.org/10.3390/en15062024].
  Google Scholar

Al-Jufout S., Al-Rousan W., Wang C.: Optimization of induction motor equivalent circuit parameter estimation based on manufacturer’s data. Energies, 11(7), 2018, 1792 [https://doi.org/10.3390/en11071792].
  Google Scholar

Arkkio A., Rasilo P., Repo A.-K.: Dynamic electromagnetic torque model and parameter estimation for a deep-bar induction machine. IET Electric Power Applications, 2(3), 2008, 183–192 [https://doi.org/10.1049/iet-epa:20070264].
  Google Scholar

Boglietti, A., Cavagnino A., Lazzari M.: Computational algorithms for induction motor equivalent circuit parameter determination. Part II: Skin effect and magnetizing characteristics. IEEE Transactions on Industrial Electronics 58(9), 2011, 3734–3740 [https://doi.org/10.1109/TIE.2010.2084975].
  Google Scholar

Diaz A., Saltares R., Rodriguez C., Nunez R., Ortiz-Rivera E., Gonzalez-Llorente J.: Induction motor equivalent circuit for dynamic simulation. IEEE International Electric Machines and Drives Conference, May 2009, 858–863 [https://doi.org/10.1109/IEMDC.2009.5075304].
  Google Scholar

Gencer C., Gedikpinar M.: A computer-aided educational tool for induction motors. Computer Applications in Engineering Education 20(3), 2012, 503–509 [https://doi.org/10.1002/cae.20418].
  Google Scholar

Havrylenko Y., Kholodniak Y., Halko S., Vershkov O., Bondarenko L., Suprun O., Miroshnyk O., Shchur T., Śrutek M., Gackowska M.: Interpolation with Specified Error of a Point Series Belonging to a Monotone Curve. Entropy 23, 2021, 493 [https://doi.org/10.3390/e23050493].
  Google Scholar

Havrylenko Y., Kholodniak Y., Halko S., Vershkov O., Miroshnyk O., Suprun O., Dereza O., Shchur T., Śrutek M.: Representation of a Monotone Curve by a Contour with Regular Change in Curvature. Entropy 23, 2021, 923 [https://doi.org/10.3390/e23070923].
  Google Scholar

Helonde A., Mankar M.: Identifying three phase induction motor equivalent circuit parameters from nameplate data by different analytical methods. International Journal of Trend in Scientific Research and Development 3(3), 2019, 642–645 [https://doi.org/10.31142/ijtsrd22934].
  Google Scholar

Hesari S., Noruziazghandi M., Shojaei A., Neyestani M.: Investigating the intelligent methods of loss minimization in induction motors. Telecommunication Computing Electronics and Control (TELKOMNIKA) 16(3), 2018, 1034–1053 [https://doi.org/10.12928/telkomnika.v16i3.8293].
  Google Scholar

Hudym V. I.: Tekhnichni zasoby znyzhennya harmonik v elektropostachal’nykh systemakh. Tekhnichna elektrodynamika 3, 1996, 30–35.
  Google Scholar

Hudym V. I., Dovbnia V. I.: Eksperymental’ne doslidzeniya parametriv I kharakterystyk filtrovokho reaktora z dodatkovyu obmotkoyu. Energetitsni ta elektromekhanichni systemy. Visnyk DULP 347, 1998, 11–17.‏
  Google Scholar

Hudym V. I., Jagello A., Mamciarz D.: Elektritsnyy reatstor z plavno rehul’ovanoyu induktyvnistyu. Patent Ukrayiny 118500, 25.01.2019.
  Google Scholar

Karaiev O. et al.: Mathematical modelling of the fruit-stone culture seeds calibration process using flat sieves. Acta Technologica Agriculturae 24(3), 2021, 119–123 [https://doi.org/10.2478/ata-2021-0020].
  Google Scholar

Khasawneh A. et al.: Optimal Determination Method of the Transposition Steps of An Extra-High Voltage Power Transmission Line. Energies 14, 2021, 6791 [https://doi.org/10.3390/en14206791].
  Google Scholar

Maddi Z., Aouzellag D.: Dynamic modelling of induction motor squirrel cage for different shapes of rotor deep bars with estimation of the skin effect. Progress in Electromagnetics Research M 59, 2017, 147–160 [https://doi.org/10.2528/PIERM17060508]
  Google Scholar

Miroshnyk O. et al.: Investigation of Smart Grid Operation Modes with Electrical Energy Storage System. Energies 16, 2023, 2638 [https://doi.org/10.3390/en16062638].
  Google Scholar

Monjo L., Córcoles F., Pedra J.: Parameter estimation of squirrel‐cage motors with parasitic torques in the torque-slip curve. IET Electric Power Applications 9(5), 2015, 377–387 [https://doi.org/10.1049/iet-epa.2014.0208].
  Google Scholar

Nasir B.: An accurate determination of induction machine equivalent circuit components. 1st International Multi-Disciplinary Conference Theme: Sustainable Development and Smart Planning, IMDC-SDSP 2020, Cyperspace, 2020 [https://doi.org/10.4108/eai.28-6-2020.2297941].
  Google Scholar

Petrov A. et al.: Adjusted electrical equivalent circuit model of induction motor with broken rotor bars and eccentricity faults. IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, 2017, 58–64 [https://doi.org/10.1109/DEMPED.2017.8062334].
  Google Scholar

Pusca R. et al.: Finite element analysis and experimental study of the near-magnetic field for detection of rotor faults in induction motors. Progress in Electromagnetics Research B, 50, 2013, 37–59 [https://doi.org/10.2528/PIERB13021203].
  Google Scholar

Qawaqzeh M. Z. et al.: Research of Emergency Modes of Wind Power Plants Using Computer Simulation. Energies 2021, 14, 4780 [https://doi.org/10.3390/en14164780].
  Google Scholar

Smith A., Healey R., Williamson S.: A transient induction motor model including saturation and deep bar effect. IEEE Transactions on Energy Conversion 11(1), 1996, 8–15 [https://doi.org/10.1109/60.486570].
  Google Scholar

Solar L. et al.: A new exact equivalent circuit of the medium voltage three-phase induction motor. International Journal of Electrical and Computer Engineering 10(6), 2020, 6164–6171 [https://doi.org/10.11591/ijece.v10i6.pp6164-6171].‏
  Google Scholar

Terzioğlu H., Selek M.: Determination of equivalent circuit parameters of induction motors by using heuristic algorithms. Selcuk University Journal of Engineering, Science and Technology 5(2), 2017, 170–182 [https://doi.org/10.15317/Scitech.2017.80].‏
  Google Scholar

Tezcan M. et al.: Investigation of the effects of the equivalent circuit parameters on induction motor torque using three different equivalent circuit models. Matec Web of Conferences 157, 2018 [https://doi.org/10.1051/matecconf/201815701019].
  Google Scholar

Zynovkyn V.V., Lyutыy A.P., Balabukha N.S.: Эlektrotekhnolohycheskye rezhymы эnerhoemkykh potrebyteley rezkoperemennыkh nahruzok y ykh vlyyanye na эlektrooborudovanye system эlektrosnabzhenyya. Tekhnichna elektrodynamika 5, 2000, 64–67.
  Google Scholar

Download


Published
2024-06-30

Cited by

Hudym, V., Kosovska, V., Al_Issa, H., Shchur, T., Miroshnyk, O., & Ziarkowski, S. (2024). CHANGE OF FREQUENCY CHARACTERISTICS OF A FILTER USING A REACTOR WITH SMOOTHLY ADJUSTABLE INDUCTANCE. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 14(2), 28–33. https://doi.org/10.35784/iapgos.5810

Authors

Vasyl Hudym 

Lviv National Environmental University Ukraine

Authors

Vira Kosovska 

Lviv Polytechnic National University Ukraine
https://orcid.org/0000-0001-6627-1856

Authors

Huthaifa Al_Issa 

Al-Balqa Applied University, Department of Electrical and Electronics Engineering, Al Salt, Jordan Jordan

Authors

Taras Shchur 
shchurtg@gmail.com
Cyclone Manufacturing Inc, Mississauga Ukraine
https://orcid.org/0000-0003-0205-032X

Authors

Oleksandr Miroshnyk 

State Biotechnological University, Department of Electricity Supply and Energy Management Ukraine
https://orcid.org/0000-0002-6144-7573

Authors

Sławomir Ziarkowski 

Spektrum, Kraków, Poland Poland
https://orcid.org/0009-0009-5253-7225

Statistics

Abstract views: 100
PDF downloads: 64


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)