UTILIZING GAUSSIAN PROCESS REGRESSION FOR NONLINEAR MAGNETIC SEPARATION PROCESS IDENTIFICATION
Oleksandr Volovetskyi
ovolovetskyi@knu.edu.uaKryvyi Rih National University (Ukraine)
https://orcid.org/0009-0003-1703-387X
Abstract
This paper presents a novel approach utilizing Gaussian Process Regression (GPR) to identify dynamic models with nonlinear parameters in magnetic separation processes. It aims to address the complex and dynamic nature of these processes by employing advanced modeling methods. The effectiveness of GPR is demonstrated through its application to simulated signals representing real iron ore separation processes, highlighting its potential to enhance existing models and optimize processes. Conducted within the MATLAB, this research lays the groundwork for further advancement and practical implementation. The utilization of GPR in magnetic separation offers innovative modeling of nonlinear dynamic processes, promising improved efficiency and precision in industrial applications.
Keywords:
Gaussian process regression, magnetic separation, nonlinear modeling, dynamic systemsReferences
[1] Abrahamsen P. A: Review of Gaussian Random Fields and Correlation Functions. Apr. 1997 [https://doi.org/10.13140/RG.2.2.23937.20325].
Google Scholar
[2] Bakhrushyn V.Ye. Matematychni osnovy modelyuvannya system: navchal’nyy posibnykdlya studentiv. Classic Private University, Zaporizhzhia 2009..
Google Scholar
[3] Bilets’kyy V. S. et al.: Osnovy tekhniky ta tekhnolohiyi zbahachennya korysnykh kopalyn. Lira-K, Kiev 2020.
Google Scholar
[4] Dobbins M. et al.: Recent Advances in Magnetic Separator Designs and Applications. Heavy Minerals Conference – SAIMM, 2009, 63–70 [www.saimm.co.za/Conferences/HMC2009/063-070_Dobbins.pdf].
Google Scholar
[5] Drucker H. et al.: Support Vector Regression Machines. Advances in Neural Information Processing Systems 9, 1996, 155–161 [http://papers.neurips.cc/paper/1238-support-vector-regression-machines.pdf].
Google Scholar
[6] Duvenaud D.: Automatic Model Construction With Gaussian Processes Declaration. University of Cambridge, Doctor of Philosophy, 2014. [http://www.cs.toronto.edu/~duvenaud/thesis.pdf].
Google Scholar
[7] Jämsä-Jounela S.-L.: Current Status and Future Trends in the Automation of Mineral and Metal Processing. IFAC Proceedings 33(22), 2000, 83–94 [https://doi.org/10.1016/s1474-6670(17)36973-2].
DOI: https://doi.org/10.1016/S1474-6670(17)36973-2
Google Scholar
[8] Kocijan J., Ažman K.: An Example of Gaussian Process Model Identification. Conference MIPRO 2005:28, Ljubljana, Slovenia, 2005, 79–84 [http://www.researchgate.net/publication/228804422_An_example_of_Gaussian_process_model_identification].
Google Scholar
[9] Kocijan J., Murray-Smith R.: Nonlinear Predictive Control With a Gaussian Process Model. Switching and Learning in Feedback Systems Conference, 2003 185–200 [http://www.researchgate.net/publication/221185944_Nonlinear_Predictive_ Control_with_a_Gaussian_Process_Model].
DOI: https://doi.org/10.1007/978-3-540-30560-6_8
Google Scholar
[10] Kocijan J. et al.: Predictive Control With Gaussian Process Models. IEEE Region Conference EUROCON 2003. IEEE, 2003, 352–56 [https://doi.org/10.1109/EURCON.2003.1248042].
DOI: https://doi.org/10.1109/EURCON.2003.1248042
Google Scholar
[11] Kocijan J. et al.: The Concept for Gaussian Process Model Based System Identification Toolbox. Proceedings of the 2007 International Conference on Computer Systems and Technologies (CompSysTech‘07), 1–6 [https://doi.org/10.1145/1330598.1330647].
DOI: https://doi.org/10.1145/1330598.1330647
Google Scholar
[12] Korniyenko V. I. et al.: Teoriya system keruvannya. NHU, Dnipro 2017.
Google Scholar
[13] Maryuta A. N. et al.: Avtomaticheskoye upravleniye tekhnologicheskimi protsessami obogatitel'nykh fabrik. Nedra, Moscow 1983.
Google Scholar
[14] Morkun V., Tron V., Goncharov S.: Automation of the ore varieties recognition process in the technological process streams based on the dynamic effects of highenergy ultrasound. Metallurgical and Mining Industry 2, 2015, 31–34.
Google Scholar
[15] Morkun V., Morkun N., Pikilnyak A.: Adaptive control system of ore beneficiation process based on Kaczmarz projection algorithm. Metallurgical and Mining Industry 2, 2015, 35–38.
Google Scholar
[16] Morkun V., Tron V.: Automation of iron ore raw materials beneficiation with the operational recognition of its varieties in process streams. Metallurgical and Mining Industry 6, 2014, 4–7.
Google Scholar
[17] Morkun V., Morkun N., Tron V.: Formalization and frequency analysis of robust control of ore beneficiation technological processes under parametric uncertainty. Metallurgical and Mining Industry 5, 2015, 7–11.
Google Scholar
[18] Morkun V., Morkun N., Tron V.: Model synthesis of nonlinear nonstationary dynamical systems in concentrating production using Volterra kernel transformation. Metallurgical and Mining Industry 10, 2015, 6–9.
Google Scholar
[19] Morkun V., Tcvirkun S.: Investigation of methods of fuzzy clustering for determining ore types. Metallurgical and Mining Industry 5, 2014, 11–14.
Google Scholar
[20] Morkun V., Morkun N., Pikilnyak A.: The study of volume ultrasonic waves propagation in the gas-containing iron ore pulp. Ultrasonics 56, 2015, 340–343.
DOI: https://doi.org/10.1016/j.ultras.2014.08.022
Google Scholar
[21] Nesterov G. S.: Tekhnologicheskaya optimizatsiya obogatitel'nykh fabrik. Nedra, Moscow 1976.
Google Scholar
[22] Patil, S., Shruti P.: Linear With Polynomial Regression: Overview. International Journal of Applied Research 7(8), 2021, 273–275, [https://doi.org/10.22271/allresearch.2021.v7.i8d.8876].
DOI: https://doi.org/10.22271/allresearch.2021.v7.i8d.8876
Google Scholar
[23] Sbárbaro D., Villar R.: Advanced Control and Supervision of Mineral Processing Plants. Springer, 2011.
DOI: https://doi.org/10.1007/978-1-84996-106-6
Google Scholar
[24] Svoboda J., Fujita T. Recent developments in magnetic methods of material separation. Minerals Engineering 16(9), 2003, 785–792, [https://doi.org/10.1016/s0892-6875(03)00212-7].
DOI: https://doi.org/10.1016/S0892-6875(03)00212-7
Google Scholar
[25] Thompson K. R.: Implementation of Gaussian Process Models for Nonlinear System Identification. 2009. University of Glasgow. Ph.D. thesis [https://www.researchgate.net/publication/258903887_Implementation_of_Gaussian_Process_models_for_nonlinear_system_identification].
Google Scholar
[26] Tripathy S. K., Suresh N.: Influence of particle size on dry high-intensity magnetic separation of paramagnetic mineral. Advanced Powder Technology 28(3), 2017, 1092–1102 [https://doi.org/10.1016/j.apt.2017.01.018].
DOI: https://doi.org/10.1016/j.apt.2017.01.018
Google Scholar
[27] Trombetta E. I. et al.: Nonlinear UGV Identification Methods via the Gaussian Process Regression Model for Control System Design. Applied Sciences 12(22), 2022, 1–13 [https://doi.org/10.3390/app122211769].
DOI: https://doi.org/10.3390/app122211769
Google Scholar
[28] Trop A. E. et al.: Avtomaticheskoye upravleniye tekhnologicheskimi protsessami obogatitel'nykhfabrik. Nerda, Moscow 1986.
Google Scholar
[29] Vynohradov V. S. et al.: Avtomatizatsiya tekhnologicheskikh protsessov na gornorudnykh predpriyatiyakh. Nedra, Moscow 1984.
Google Scholar
[30] Wills B. A.: Wills' Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. Elsevier Science & Technology Books, 2011.
Google Scholar
[31] Gaussian Process Regression Models – MATLAB and Simulink [https://www.mathworks.com/help/stats/gaussian-process-regression-models.html] (available: 28.02.2024).
Google Scholar
[32] Global Iron Ore Production Iron Content 2010-2022 [https://www.statista.com/statistics/589979/metal-content-of-the-global-iron-ore-production] (available: 28.02.2024).
Google Scholar
[33] Interactive Visualization of Gaussian Processes [https://www.infinitecuriosity.org/vizgp] (available: 28.02.2024).
Google Scholar
Authors
Oleksandr Volovetskyiovolovetskyi@knu.edu.ua
Kryvyi Rih National University Ukraine
https://orcid.org/0009-0003-1703-387X
Statistics
Abstract views: 52PDF downloads: 28