IOT BASED ECG: HYBRID CNN-BILSTM APPROACH FOR MYOCARDIAL INFARCTION CLASSIFICATION
Abdelmalek Makhir
abdelmalek_makhir@um5.ac.maMohammed V University in Rabat (Morocco)
https://orcid.org/0009-0001-0545-818X
My Hachem El Yousfi Alaoui
Mohammed V University in Rabat (Morocco)
Larbi Bellarbi
Mohammed V University in Rabat (Morocco)
Abdelilah Jilbab
Mohammed V University in Rabat (Morocco)
Abstract
Cardiovascular disease such as ischemic heart disease and stroke are the most dangerous diseases in the WHO stats. Myocardial Infarction (MI), an ischemic disease of the heart, occurs due to a sudden blockage in the coronary arteries that supply blood to the heart causing a lack of oxygen and nutrients. The MI patient needs continuous monitoring using electrocardiography, the latter is always at risk of developing complications such as arrhythmias. As a solution, we proposed an internet of things (IoT) based ECG system for monitoring, the application layer was reserved for the detection of MI and arrhythmias using artificial intelligence so that the patients can keep being monitored even outside health facilities. For this purpose, this paper proposed a hybrid Convolutional Neural Network (CNN) – Bidirectional Long Short-Term Memory (BiLSTM) approach to classify ECG signals and evaluates its performance by using raw and preprocessed data, and comparing the results to related studies. Two datasets have been used in this classification. The results were promising, the model has scored 99.00% accuracy on raw data classifying 4 classes, and 99.73% accuracy on a larger preprocessed data for 3 classes classification. The proposed model is suitable to serve in our monitoring task.
Keywords:
Electrocardiography, Deep learning, Internet of Things, convolutional neural network, Bidirectional Long Short-Term MemoryReferences
[1] Acharya U. R. et al.: A deep convolutional neural network model to classify heartbeats. Computers in biology and medicine 89, 2017, 389–396.
DOI: https://doi.org/10.1016/j.compbiomed.2017.08.022
Google Scholar
[2] Acharya U. R. et al.: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Information Sciences 415, 2017, 190–198.
DOI: https://doi.org/10.1016/j.ins.2017.06.027
Google Scholar
[3] ANSI/AAMI EC57. Association for the Advancement of Medical Instrumentation and Others, Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms 1998 (1998).
Google Scholar
[4] Benjamin E. J. et al.: Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 139(10), 2019, e56-e528.
Google Scholar
[5] Bisong E.: Building machine learning and deep learning models on Google cloud platform. Apress, Berkeley 2019.
DOI: https://doi.org/10.1007/978-1-4842-4470-8
Google Scholar
[6] Bousseljot R., Kreiseler D., Schnabel A.: Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet, 1995, 317–318.
DOI: https://doi.org/10.1515/bmte.1995.40.s1.317
Google Scholar
[7] Douzas G., Bacao F., Last F.: Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Information sciences 465, 2018, 1–20.
DOI: https://doi.org/10.1016/j.ins.2018.06.056
Google Scholar
[8] Fan X. et al.: A novel hybrid network of fusing rhythmic and morphological features for atrial fibrillation detection on mobile ECG signals. Neural Computing and Applications 32(12), 2020, 8101–8113.
DOI: https://doi.org/10.1007/s00521-019-04318-2
Google Scholar
[9] Gao J. et al.: An effective LSTM recurrent network to detect arrhythmia on imbalanced ECG dataset. Journal of healthcare engineering 1, 2019, 6320651.
DOI: https://doi.org/10.1155/2019/6320651
Google Scholar
[10] Goldberger A. L. et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), 2000, e215-e220.
DOI: https://doi.org/10.1161/01.CIR.101.23.e215
Google Scholar
[11] Guo L., Sim G., Matuszewski B.: Inter-patient ECG classification with convolutional and recurrent neural networks. Biocybernetics and Biomedical Engineering 39(3), 2019, 868–879.
DOI: https://doi.org/10.1016/j.bbe.2019.06.001
Google Scholar
[12] Guth J. et al.: Comparison of IoT platform architectures: A field study based on a reference architecture. Cloudification of the Internet of Things – CIoT. IEEE, 2016.
DOI: https://doi.org/10.1109/CIOT.2016.7872918
Google Scholar
[13] Kachuee M., Fazeli S., Sarrafzadeh M.: ECG heartbeat classification: A deep transferable representation. IEEE international conference on healthcare informatics – ICHI. IEEE, 2018.
DOI: https://doi.org/10.1109/ICHI.2018.00092
Google Scholar
[14] Kiranyaz S., Ince T., Gabbouj M.: Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE transactions on biomedical engineering 63(3), 2015, 664–675.
DOI: https://doi.org/10.1109/TBME.2015.2468589
Google Scholar
[15] Hossin M., Sulaiman M. N.: A review on evaluation metrics for data classification evaluations. International journal of data mining & knowledge management process 5(2), 2015, 1.
DOI: https://doi.org/10.5121/ijdkp.2015.5201
Google Scholar
[16] Makhir A. et al.: Comprehensive Cardiac Ischemia Classification Using Hybrid CNN-Based Models. International Journal of Online and Biomedical Engineering – iJOE 20(3), 2024, 2024, 154–165.
DOI: https://doi.org/10.3991/ijoe.v20i03.45769
Google Scholar
[17] Mark R. G. et al.: An annotated ECG database for evaluating arrhythmia detectors. IEEE Transactions on Biomedical Engineering 29(8), 1982.
Google Scholar
[18] Marti H. H., Risau W.: Angiogenesis in ischemic disease. Thrombosis and haemostasis 82(S 01), 1999, 44–52.
DOI: https://doi.org/10.1055/s-0037-1615552
Google Scholar
[19] Moody G. B., Mark R. G.: The impact of the MIT-BIH arrhythmia database. IEEE engineering in medicine and biology magazine 20(3), 2001, 45–50.
DOI: https://doi.org/10.1109/51.932724
Google Scholar
[20] Rautaharju P. M., Surawicz B., Gettes L. S.: AHA/ACCF/HRS recom-mendations for the standardization and interpretation of the electrocardiogram: part IV: the ST segment, T and U waves, and the QT interval: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society: endorsed by the International Society for Computerized Electrocardiology. Circulation 119(10), 2009, e241-e250.
DOI: https://doi.org/10.1161/CIRCULATIONAHA.108.191096
Google Scholar
[21] Singh S. et al.: Classification of ECG arrhythmia using recurrent neural networks. Procedia Computer Science 132, 2018, 1290–1297.
DOI: https://doi.org/10.1016/j.procs.2018.05.045
Google Scholar
[22] Tan K. F., Chan K. L., Choi K.: Detection of the QRS complex, P wave and T wave in electrocardiogram. First International Conference Advances in Medical Signal and Information Processing (IEE Conf. Publ. No. 476). IET, 2000.
DOI: https://doi.org/10.1049/cp:20000315
Google Scholar
[23] Wu M. et al.: A study on arrhythmia via ECG signal classification using the convolutional neural network. Frontiers in computational neuroscience 14, 2021, 564015.
DOI: https://doi.org/10.3389/fncom.2020.564015
Google Scholar
[24] Yildirim Ö.: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Computers in biology and medicine 96, 2018, 189–202.
DOI: https://doi.org/10.1016/j.compbiomed.2018.03.016
Google Scholar
[25] Zhao R. et al.: Machine health monitoring with LSTM networks. 10th International Conference on Sensing Technology – ICST. IEEE, 2016.
DOI: https://doi.org/10.1109/ICSensT.2016.7796266
Google Scholar
[26] Nurmaini S. et al.: An automated ECG beat classification system using deep neural networks with an unsupervised feature extraction technique. Applied sciences 9(14), 2019, 2921.
DOI: https://doi.org/10.3390/app9142921
Google Scholar
Authors
Abdelmalek Makhirabdelmalek_makhir@um5.ac.ma
Mohammed V University in Rabat Morocco
https://orcid.org/0009-0001-0545-818X
Authors
My Hachem El Yousfi AlaouiMohammed V University in Rabat Morocco
Authors
Larbi BellarbiMohammed V University in Rabat Morocco
Authors
Abdelilah JilbabMohammed V University in Rabat Morocco
Statistics
Abstract views: 58PDF downloads: 19
Most read articles by the same author(s)
- Ihssane Khallassi, My Hachem El Yousfi Alaoui, Abdelilah Jilbab, SEGMENTATION OF CANCER MASSES ON BREAST ULTRASOUND IMAGES USING MODIFIED U-NET , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 3 (2023)
- Mohamed Bal-Ghaoui, My Hachem El Yousfi Alaoui, Abdelilah Jilbab, Abdennaser Bourouhou, OPTIMIZING ULTRASOUND IMAGE CLASSIFICATION THROUGH TRANSFER LEARNING: FINE-TUNING STRATEGIES AND CLASSIFIER IMPACT ON PRE-TRAINED INNER-LAYERS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 13 No. 4 (2023)
- Maroua Guissi, My Hachem El Yousfi Alaoui, Larbi Belarbi, Asma Chaik, IoT FOR PREDICTIVE MAINTENANCE OF CRITICAL MEDICAL EQUIPMENT IN A HOSPITAL STRUCTURE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 2 (2024)
- Zakaryae Khomsi, Mohamed El Fezazi, Achraf Elouerghi, Larbi Bellarbi, EVALUATING THE FEASIBILITY OF THERMOGRAPHIC IMAGES FOR PREDICTING BREAST TUMOR STAGE USING DCNN , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 14 No. 1 (2024)