IOT BASED ECG: HYBRID CNN-BILSTM APPROACH FOR MYOCARDIAL INFARCTION CLASSIFICATION
Article Sidebar
Open full text
Issue Vol. 14 No. 3 (2024)
-
THEORETICAL APPROACH FOR DETERMINING AN EMISSIVITY OF SOLID MATERIALS AND ITS COMPARISON WITH EXPERIMENTAL STUDIES ON THE EXAMPLE OF 316L POWDER STEEL
Oleksandr Vasilevskyi, Michael Cullinan, Jared Allison5-8
-
INFORMATION SYSTEM FOR DETECTION OF PARAMETERS OF DANGEROUS INDUSTRIAL FACILITIES BASED ON GEOINFORMATION TECHNOLOGIES
Oleg Barabash, Olha Svynchuk, Olena Bandurka, Oleh Ilin9-14
-
PERIODIC ATEB-FUNCTIONS AND THE VAN DER POL METHOD FOR CONSTRUCTING SOLUTIONS OF TWO-DIMENSIONAL NONLINEAR OSCILLATIONS MODELS OF ELASTIC BODIES
Yaroslav Romanchuk, Mariia Sokil, Leonid Polishchuk15-20
-
UTILIZING GAUSSIAN PROCESS REGRESSION FOR NONLINEAR MAGNETIC SEPARATION PROCESS IDENTIFICATION
Oleksandr Volovetskyi21-28
-
TWO-DIMENSIONAL HYPERCHAOTIC MAP FOR CHAOTIC OSCILLATIONS
Oleh Krulikovskyi, Serhii Haliuk, Ihor Safronov, Valentyn Lesinskyi29-34
-
NEUROBIOLOGICAL PROPERTIES OF THE STRUCTURE OF THE PARALLEL-HIERARCHICAL NETWORK AND ITS USAGE FOR PATTERN RECOGNITION
Leonid Timchenko, Natalia Kokriatskaia, Volodymyr Tverdomed, Anatolii Horban, Oleksandr Sobovyi, Liudmyla Pogrebniak, Nelia Burlaka, Yurii Didenko, Maksym Kozyr, Ainur Kozbakova35-38
-
MODELS OF FALSE AND CORRECT DETECTION OF INFORMATION LEAKAGE SIGNALS FROM MONITOR SCREENS BY A SPECIALIZED TECHNICAL MEANS OF ENEMY INTELLIGENCE
Dmytro Yevgrafov, Yurii Yaremchuk39-42
-
STREAMLINING DIGITAL CORRELATION-INTERFEROMETRIC DIRECTION FINDING WITH SPATIAL ANALYTICAL SIGNAL
Nurzhigit Smailov, Vitaliy Tsyporenko, Akezhan Sabibolda, Valentyn Tsyporenko, Askar Abdykadyrov, Assem Kabdoldina, Zhandos Dosbayev, Zhomart Ualiyev, Rashida Kadyrova43-48
-
MATHEMATICAL MODEL AND STRUCTURE OF A NEURAL NETWORK FOR DETECTION OF CYBER ATTACKS ON INFORMATION AND COMMUNICATION SYSTEMS
Lubov Zahoruiko, Tetiana Martianova, Mohammad Al-Hiari, Lyudmyla Polovenko, Maiia Kovalchuk, Svitlana Merinova, Volodymyr Shakhov, Bakhyt Yeraliyeva49-55
-
A METHOD FOR FORMING A TRUNCATED POSITIONAL CODE SYSTEM FOR TRANSFORMED VIDEO IMAGES
Volodymyr Barannik, Roman Onyshchenko, Gennady Pris, Mykhailo Babenko, Valeriy Barannik, Vitalii Shmakov, Ivan Pantas56-60
-
Z-NUMBERS BASED MODELING OF GROUP DECISION MAKING FOR SUPPLIER SELECTION IN MANUFACTURING SYSTEMS
Kamala Aliyeva61-67
-
OPTIMIZATION OF AN INTELLIGENT CONTROLLED BRIDGELESS POSITIVE LUO CONVERTER FOR LOW-CAPACITY ELECTRIC VEHICLES
Rangaswamy Balamurugan, Ramasamy Nithya68-70
-
MODIFIED VGG16 FOR ACCURATE BRAIN TUMOR DETECTION IN MRI IMAGERY
Katuri Rama Krishna, Mohammad Arbaaz, Surya Naga Chandra Dhanekula, Yagna Mithra Vallabhaneni71-75
-
IOT BASED ECG: HYBRID CNN-BILSTM APPROACH FOR MYOCARDIAL INFARCTION CLASSIFICATION
Abdelmalek Makhir, My Hachem El Yousfi Alaoui, Larbi Bellarbi, Abdelilah Jilbab76-80
-
INTEGRATED HYBRID MODEL FOR LUNG DISEASE DETECTION THROUGH DEEP LEARNING
Budati Jaya Lakshmi Narayana, Gopireddy Krishna Teja Reddy, Sujana Sri Kosaraju, Sirigiri Rajeev Choudhary81-85
-
POLARIZATION-CORRELATION MAPPING OF MICROSCOPIC IMAGES OF BIOLOGICAL TISSUES OF DIFFERENT MORPHOLOGICAL STRUCTURE
Nataliia Kozan, Oleksandr Saleha, Olexander Dubolazov, Yuriy Ushenko, Iryna Soltys, Oleksandr Ushenko, Oleksandr Olar, Victor Paliy, Saule Smailova86-90
-
REAL-TIME DETECTION AND CLASSIFICATION OF FISH IN UNDERWATER ENVIRONMENT USING YOLOV5: A COMPARATIVE STUDY OF DEEP LEARNING ARCHITECTURES
Rizki Multajam, Ahmad Faisal Mohamad Ayob, W.S. Mada Sanjaya, Aceng Sambas, Volodymyr Rusyn, Andrii Samila91-95
-
WEED DETECTION ON CARROTS USING CONVOLUTIONAL NEURAL NETWORK AND INTERNET OF THING BASED SMARTPHONE
Lintang Patria, Aceng Sambas, Ibrahim Mohammed Sulaiman, Mohamed Afendee Mohamed, Volodymyr Rusyn, Andrii Samila96-100
-
ANALYSIS AND STUDY OF ROLLING PARAMETERS OF COILS ON AN INCLINED PLANE
Larysa Gumeniuk, Lesya Fedik, Volodymyr Didukh, Pavlo Humeniuk101-104
-
ANALYSIS OF CONTENT RECOMMENDATION METHODS IN INFORMATION SERVICES
Oleksandr Necheporuk, Svitlana Vashchenko, Nataliia Fedotova, Iryna Baranova, Yaroslava Dehtiarenko105-108
-
DETERMINING STUDENT'S ONLINE ACADEMIC PERFORMANCE USING MACHINE LEARNING TECHNIQUES
Atika Islam, Faisal Bukhari, Muhammad Awais Sattar, Ayesha Kashif109-117
-
ENTROPY BASED EVALUATION OF THE IMPACT OF EDUCATION ON ECONOMIC DEVELOPMENT
Yelyzaveta Mykhailova, Nataliia Savina, Volodymyr Lytvynenko, Stanislav Mykhailov118-122
-
INFORMATION SYSTEM FOR ASSESSING THE LEVEL OF HUMAN CAPITAL MANAGEMENT
Anzhelika Azarova, Larysa Azarova, Iurii Krak, Olga Ruzakova, Veronika Azarova123-128
-
DECENTRALIZED PLATFORM FOR FINANCING CHARITY PROJECTS
Iryna Segeda, Vladyslav Kotsiuba, Oleksii Shushura, Viktoriia Bokovets, Natalia Koval, Aliya Kalizhanova129-134
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
Main Article Content
DOI
Authors
Abstract
Cardiovascular disease such as ischemic heart disease and stroke are the most dangerous diseases in the WHO stats. Myocardial Infarction (MI), an ischemic disease of the heart, occurs due to a sudden blockage in the coronary arteries that supply blood to the heart causing a lack of oxygen and nutrients. The MI patient needs continuous monitoring using electrocardiography, the latter is always at risk of developing complications such as arrhythmias. As a solution, we proposed an internet of things (IoT) based ECG system for monitoring, the application layer was reserved for the detection of MI and arrhythmias using artificial intelligence so that the patients can keep being monitored even outside health facilities. For this purpose, this paper proposed a hybrid Convolutional Neural Network (CNN) – Bidirectional Long Short-Term Memory (BiLSTM) approach to classify ECG signals and evaluates its performance by using raw and preprocessed data, and comparing the results to related studies. Two datasets have been used in this classification. The results were promising, the model has scored 99.00% accuracy on raw data classifying 4 classes, and 99.73% accuracy on a larger preprocessed data for 3 classes classification. The proposed model is suitable to serve in our monitoring task.
Keywords:
References
[1] Acharya U. R. et al.: A deep convolutional neural network model to classify heartbeats. Computers in biology and medicine 89, 2017, 389–396. DOI: https://doi.org/10.1016/j.compbiomed.2017.08.022
[2] Acharya U. R. et al.: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Information Sciences 415, 2017, 190–198. DOI: https://doi.org/10.1016/j.ins.2017.06.027
[3] ANSI/AAMI EC57. Association for the Advancement of Medical Instrumentation and Others, Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms 1998 (1998).
[4] Benjamin E. J. et al.: Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 139(10), 2019, e56-e528.
[5] Bisong E.: Building machine learning and deep learning models on Google cloud platform. Apress, Berkeley 2019. DOI: https://doi.org/10.1007/978-1-4842-4470-8
[6] Bousseljot R., Kreiseler D., Schnabel A.: Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet, 1995, 317–318. DOI: https://doi.org/10.1515/bmte.1995.40.s1.317
[7] Douzas G., Bacao F., Last F.: Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Information sciences 465, 2018, 1–20. DOI: https://doi.org/10.1016/j.ins.2018.06.056
[8] Fan X. et al.: A novel hybrid network of fusing rhythmic and morphological features for atrial fibrillation detection on mobile ECG signals. Neural Computing and Applications 32(12), 2020, 8101–8113. DOI: https://doi.org/10.1007/s00521-019-04318-2
[9] Gao J. et al.: An effective LSTM recurrent network to detect arrhythmia on imbalanced ECG dataset. Journal of healthcare engineering 1, 2019, 6320651. DOI: https://doi.org/10.1155/2019/6320651
[10] Goldberger A. L. et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), 2000, e215-e220. DOI: https://doi.org/10.1161/01.CIR.101.23.e215
[11] Guo L., Sim G., Matuszewski B.: Inter-patient ECG classification with convolutional and recurrent neural networks. Biocybernetics and Biomedical Engineering 39(3), 2019, 868–879. DOI: https://doi.org/10.1016/j.bbe.2019.06.001
[12] Guth J. et al.: Comparison of IoT platform architectures: A field study based on a reference architecture. Cloudification of the Internet of Things – CIoT. IEEE, 2016. DOI: https://doi.org/10.1109/CIOT.2016.7872918
[13] Kachuee M., Fazeli S., Sarrafzadeh M.: ECG heartbeat classification: A deep transferable representation. IEEE international conference on healthcare informatics – ICHI. IEEE, 2018. DOI: https://doi.org/10.1109/ICHI.2018.00092
[14] Kiranyaz S., Ince T., Gabbouj M.: Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE transactions on biomedical engineering 63(3), 2015, 664–675. DOI: https://doi.org/10.1109/TBME.2015.2468589
[15] Hossin M., Sulaiman M. N.: A review on evaluation metrics for data classification evaluations. International journal of data mining & knowledge management process 5(2), 2015, 1. DOI: https://doi.org/10.5121/ijdkp.2015.5201
[16] Makhir A. et al.: Comprehensive Cardiac Ischemia Classification Using Hybrid CNN-Based Models. International Journal of Online and Biomedical Engineering – iJOE 20(3), 2024, 2024, 154–165. DOI: https://doi.org/10.3991/ijoe.v20i03.45769
[17] Mark R. G. et al.: An annotated ECG database for evaluating arrhythmia detectors. IEEE Transactions on Biomedical Engineering 29(8), 1982.
[18] Marti H. H., Risau W.: Angiogenesis in ischemic disease. Thrombosis and haemostasis 82(S 01), 1999, 44–52. DOI: https://doi.org/10.1055/s-0037-1615552
[19] Moody G. B., Mark R. G.: The impact of the MIT-BIH arrhythmia database. IEEE engineering in medicine and biology magazine 20(3), 2001, 45–50. DOI: https://doi.org/10.1109/51.932724
[20] Rautaharju P. M., Surawicz B., Gettes L. S.: AHA/ACCF/HRS recom-mendations for the standardization and interpretation of the electrocardiogram: part IV: the ST segment, T and U waves, and the QT interval: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society: endorsed by the International Society for Computerized Electrocardiology. Circulation 119(10), 2009, e241-e250. DOI: https://doi.org/10.1161/CIRCULATIONAHA.108.191096
[21] Singh S. et al.: Classification of ECG arrhythmia using recurrent neural networks. Procedia Computer Science 132, 2018, 1290–1297. DOI: https://doi.org/10.1016/j.procs.2018.05.045
[22] Tan K. F., Chan K. L., Choi K.: Detection of the QRS complex, P wave and T wave in electrocardiogram. First International Conference Advances in Medical Signal and Information Processing (IEE Conf. Publ. No. 476). IET, 2000. DOI: https://doi.org/10.1049/cp:20000315
[23] Wu M. et al.: A study on arrhythmia via ECG signal classification using the convolutional neural network. Frontiers in computational neuroscience 14, 2021, 564015. DOI: https://doi.org/10.3389/fncom.2020.564015
[24] Yildirim Ö.: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Computers in biology and medicine 96, 2018, 189–202. DOI: https://doi.org/10.1016/j.compbiomed.2018.03.016
[25] Zhao R. et al.: Machine health monitoring with LSTM networks. 10th International Conference on Sensing Technology – ICST. IEEE, 2016. DOI: https://doi.org/10.1109/ICSensT.2016.7796266
[26] Nurmaini S. et al.: An automated ECG beat classification system using deep neural networks with an unsupervised feature extraction technique. Applied sciences 9(14), 2019, 2921. DOI: https://doi.org/10.3390/app9142921
Article Details
Abstract views: 271

