PERFORMANCE EVALUATION FOR FACE MASK DETECTION BASED ON MULT MODIFICATION OF YOLOV8 ARCHITECTURE
Article Sidebar
Open full text
Issue Vol. 14 No. 2 (2024)
-
HAND MOVEMENT DISORDERS TRACKING BY SMARTPHONE BASED ON COMPUTER VISION METHODS
Marko Andrushchenko, Karina Selivanova, Oleg Avrunin, Dmytro Palii, Sergii Tymchyk , Dana Turlykozhayeva5-10
-
MEANS OF ANALYZING PARAMETERS OF SPEECH SIGNAL TRANSMISSION AND REPRODUCTION
Olexiy Azarov, Larysa Azarova, Iurii Krak, Leonid Krupelnitskyi, Anzhelika Azarova, Veronika Azarova11-16
-
CONCEPT AND VALIDATION OF A SYSTEM FOR RECORDING VIBROACOUSTIC SIGNALS OF THE KNEE JOINT
Robert Karpiński, Anna Machrowska, Marcin Maciejewski, Józef Jonak, Przemysław Krakowski17-21
-
A COYOTE-INSPIRED APPROACH FOR SYSTEMIC LUPUS ERYTHEMATOSUS PREDICTION USING NEURAL NETWORKS
Sobhana Mummaneni, Pragathi Dodda, Naga Deepika Ginjupalli22-27
-
CHANGE OF FREQUENCY CHARACTERISTICS OF A FILTER USING A REACTOR WITH SMOOTHLY ADJUSTABLE INDUCTANCE
Vasyl Hudym, Vira Kosovska, Huthaifa Al_Issa, Taras Shchur, Oleksandr Miroshnyk, Sławomir Ziarkowski28-33
-
STUDY OF STARTING MODES OF SINGLE-PHASE INDUCTION MOTORS WHEN CHANGING THE PARAMETERS OF THE STATOR WINDINGS, PHASE-SHIFTING CAPACITOR AND SUPPLY VOLTAGE
Suad Omar Aldaikh, Mohannad O. Rawashdeh, Lina H. Hussienat, Mohamed Qawaqzeh, Oleksiy Iegorov, Olga Iegorova, Mykola Kundenko, Dmytro Danylchenko, Oleksandr Miroshnyk, Taras Shchur34-41
-
EVALUATION OF THE ENERGY CHARACTERISTICS OF THE INFRARED DRYING PROCESS OF RAPESEED AND SOYBEANS WITH A VIBRATING WAVE DRIVER
Igor Palamarchuk, Vladyslav Palamarchuk, Marija Zheplinska42-46
-
JUSTIFICATION OF THE POSSIBILITY OF BUILDING AN INTEGRATED ULTRASONIC MEASURING TRANSDUCER OF NATURAL GAS CONSUMPTION
Yosyp Bilynsky, Аndrii Stetsenko, Konstantin Ogorodnik47-50
-
NUMERICAL STUDY OF THE POSSIBILITY OF USING ADHESIVE JOINTS FOR INDIRECT MEASUREMENTS FOR STRESS DISTRIBUTION
Piotr Kisała, Paweł Wiśniewski51-55
-
A MODIFIED METHOD OF SPECTRAL ANALYSIS OF RADIO SIGNALS USING THE OPERATOR APPROACH FOR THE FOURIER TRANSFORM
Valentyn Sobchuk, Serhii Laptiev, Tetiana Laptievа, Oleg Barabash, Oleksandr Drobyk, Andrii Sobchuk56-61
-
ITERATIVE DECODING OF SHORT LOW-DENSITY PARITY-CHECK CODES BASED ON DIFFERENTIAL EVOLUTION
Mykola Shtompel, Sergii Prykhodko62-65
-
A REVIEW OF GENERATIVE ADVERSARIAL NETWORKS FOR SECURITY APPLICATIONS
Swarajya Madhuri Rayavarapu, Shanmukha Prasanthi Tammineni, Sasibhushana Rao Gottapu, Aruna Singam66-70
-
IoT FOR PREDICTIVE MAINTENANCE OF CRITICAL MEDICAL EQUIPMENT IN A HOSPITAL STRUCTURE
Maroua Guissi, My Hachem El Yousfi Alaoui, Larbi Belarbi, Asma Chaik71-76
-
APPLICATION OF RESNET-152 NEURAL NETWORKS TO ANALYZE IMAGES FROM UAV FOR FIRE DETECTION
Nataliia Stelmakh, Svitlana Mandrovska, Roman Galagan77-82
-
IDENTIFICATION OF SALT-AFFECTED SOILS IN THE COASTAL AREA OF KRISHNA DISTRICT, ANDHRA PRADESH, USING REMOTE SENSING DATA AND MACHINE LEARNING TECHNIQUES
Govada Anuradha, Venkata Sai Sankara Vineeth Chivukula, Naga Ganesh Kothangundla83-88
-
PERFORMANCE EVALUATION FOR FACE MASK DETECTION BASED ON MULT MODIFICATION OF YOLOV8 ARCHITECTURE
Muna AL-Shamdeen, Fawziya Mahmood Ramo89-95
-
EVALUATION OF ENGINEERING SOLUTIONS IN THE DEVELOPMENT OF THE PROCUREMENT SECTION FOR THE METAL CONSTRUCTION WORKSHOP
Bogdan Palchevskyi, Lubov Krestyanpol96-100
-
EVALUATING THE PERFORMANCE OF BITCOIN PRICE FORECASTING USING MACHINE LEARNING TECHNIQUES ON HISTORICAL DATA
Mamun Ahmed, Sayma Alam Suha, Fahamida Hossain Mahi, Forhad Uddin Ahmed101-108
-
METHODS OF INTELLIGENT DATA ANALYSIS USING NEURAL NETWORKS IN DIAGNOSIS
Volodymyr Lyfar, Olena Lyfar, Volodymyr Zynchenko109-112
-
IMPROVING PARAMETERS OF V-SUPPORT VECTOR REGRESSION WITH FEATURE SELECTION IN PARALLEL BY USING QUASI-OPPOSITIONAL AND HARRIS HAWKS OPTIMIZATION ALGORITHM
Omar Mohammed Ismael, Omar Saber Qasim, Zakariya Yahya Algamal113-118
-
AN ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM WITH A BOUND ADJUSTMENT STRATEGY FOR SOLVING NONLINEAR PARAMETER IDENTIFICATION PROBLEMS
Watchara Wongsa, Pikul Puphasuk, Jeerayut Wetweerapong119-126
-
MODELING THE CHOICE OF AN ONLINE COURSE FOR INFORMATION HYGIENE SKILLS USING THE SAATY METHOD
Yuliia Rudenko, Karen Ahadzhanov-Honsales, Svitlana Ahadzhanova, Alla Batalova, Olena Bieliaieva, Artem Yurchenko, Olena Semenikhina127-132
-
REVIEW OF THE ACHIEVEMENTS OF EMPLOYEES OF THE LUBLIN UNIVERSITY OF TECHNOLOGY IN THE FIELD OF FUZZY SET UTILIZATION
Maciej Celiński, Adam Kiersztyn133-140
-
MODELING ROBOTECHNICAL MECHATRONIC COMPLEXES IN V-REP PROGRAM
Laura Yesmakhanova141-148
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
Main Article Content
DOI
Authors
Abstract
This work aims to engineer a robust system capable of real-time detection, accurately discerning individuals who are either adhering to or neglecting face mask mandates, across a diverse range of scenarios encompassing images, videos, and live camera streams. This study improved the architecture of YOLOv8n for face mask detection by building a new two-modification version of YOLOv8n model to improve feature extraction and prediction network for YOLOv8n. In proposed YOLOv8n-v1, the integration of a residual Network backbone into the YOLOv8n architecture by replacing the first two layers of YOLOv8n with ResNet_Stem and ResNet_Block modules to improve the model’s ability for feature extraction and replace Spatial Pyramid Pooling Fast (SPPF) module with Spatial Pyramid Pooling-Cross Stage Partial (SPPCSP) modules which combine SPP and CSP to create a network that is both effective and efficient. The proposed YOLOv8n-v2 is built by integration Ghostconv and ResNet_Downsampling modules into the proposed YOLOv8n-v1 backbone. All models have been tested and evaluated on two datasets. The first one is MJFR dataset, which contains 23,621 images, and collected by the authors of this paper from four distinct datasets, all of which were used for facemask detection purposes. The second one is MSFM object detection dataset has been collected from groups of videos in real life and images based on the curriculum learning technology. The model’s performance is assessed by using the following metrics: mean average precision (mAP50), mAP50-95, recall (R) and precision (P). It has been concluded that both versions of proposed YOLOv8n outperform the original model in terms of accuracy for both datasets. Finally, the system was successfully implemented in one of the medical clinics affiliated with a medical complex, where the results of its application showed high efficiency in various aspects of work, and it effectively contributed to improving the public health and safety.
Keywords:
References
Ahuja A. S. et al.: Artificial intelligence in ophthalmology: A multidisciplinary approach. Integrative Medicine Research 11(4), 2022, 100888. DOI: https://doi.org/10.1016/j.imr.2022.100888
Al-Shamdeen M. J., Younis A. N., Younis H. A.: Metaheuristic algorithm for capital letters images recognition. Computer Science 16(2), 2020, 577–588.
Bhujel S., Shakya S.: Rice Leaf Diseases Classification Using Discriminative Fine Tuning and CLR on EfficientNet. Journal of Soft Computing Paradigm 4(3), 2022, 172–187. DOI: https://doi.org/10.36548/jscp.2022.3.006
Chabi Adjobo E. et al.: Automatic Localization of Five Relevant Dermoscopic Structures Based on YOLOv8 for Diagnosis Improvement. Journal of Imaging 9(7), 2023, 148. DOI: https://doi.org/10.3390/jimaging9070148
Deng J. et al.: Retinaface: Single-stage dense face localisation in the wild. arXiv preprint arXiv: 1905.00641, 2019. DOI: https://doi.org/10.1109/CVPR42600.2020.00525
Diwan T., Anirudh G., Tembhurne J. V.: Object detection using YOLO: Challenges, architectural successors, datasets and applications. multimedia Tools and Applications 82(6), 2023, 9243–9275. DOI: https://doi.org/10.1007/s11042-022-13644-y
Elharrouss O. et al.: Backbones-review: Feature extraction networks for deep learning and deep reinforcement learning approaches. arXiv preprint arXiv: 2206.08016, 2022.
Gunawan T.S. et al.: Development of video-based emotion recognition using deep learning with Google Colab. TELKOMNIKA (Telecommunication Computing Electronics and Control) 18(5), 2020, 2463–2471. DOI: https://doi.org/10.12928/telkomnika.v18i5.16717
Ju R. Y., Cai W.: Fracture Detection in Pediatric Wrist Trauma X-ray Images Using YOLOv8 Algorithm. arXiv preprint arXiv: 2304.05071, 2023. DOI: https://doi.org/10.1038/s41598-023-47460-7
Kelleher J. D.: Deep learning. MIT Press, 2019. DOI: https://doi.org/10.7551/mitpress/11171.001.0001
Kumar A., Kalia A., Kalia A.: ETL-YOLO v4: A face mask detection algorithm in era of COVID-19 pandemic. Optik, 259, 2022, 169051. DOI: https://doi.org/10.1016/j.ijleo.2022.169051
Loey M. et al.: A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic. Measurement 167, 2021, 108288. DOI: https://doi.org/10.1016/j.measurement.2020.108288
Lou H. et al.: DC-YOLOv8: Small-Size Object Detection Algorithm Based on Camera Sensor. Electronics 12(10), 2023, 2323. DOI: https://doi.org/10.3390/electronics12102323
Mbunge E. et al.: Application of deep learning and machine learning models to detect COVID-19 face masks-A review. Sustainable Operations and Computers 2, 2021, 235–245. DOI: https://doi.org/10.1016/j.susoc.2021.08.001
Mohammed Ali F. A., Al-Tamimi M. S.: Face mask detection methods and techniques: A review. International Journal of Nonlinear Analysis and Applications 13(1), 2022, 3811–3823.
Nowrin A. et al.: Comprehensive review on facemask detection techniques in the context of covid-19. IEEE access 9, 2021, 106839–106864. DOI: https://doi.org/10.1109/ACCESS.2021.3100070
Padilla R., Netto S. L., Da Silva E. A.: A survey on performance metrics for object-detection algorithms. in 2020 international conference on systems, signals and image processing (IWSSIP), IEEE, 2020. DOI: https://doi.org/10.1109/IWSSIP48289.2020.9145130
Phan Q. B., Nguyen T.: A Novel Approach for PV Cell Fault Detection using YOLOv8 and Particle Swarm Optimization, 2023. DOI: https://doi.org/10.36227/techrxiv.22680484.v1
Rajeshwari P. et al.: Object detection: an overview. Int. J. Trend Sci. Res. Dev. (IJTSRD) 3(1), 2019, 1663–1665. DOI: https://doi.org/10.31142/ijtsrd23422
Reis D. et al.: Real-Time Flying Object Detection with YOLOv8. arXiv preprint arXiv: 2305.09972, 2023.
Solawetz J.: What is YOLOv8? The Ultimate Guide, 2023, [https://blog.roboflow.com/whats-new-in-yolov8/] (available: 1.01.2024).
Talaat F. M., ZainEldin H.: An improved fire detection approach based on YOLO-v8 for smart cities. Neural Computing and Applications, 2023, 1–16. DOI: https://doi.org/10.1007/s00521-023-08809-1
Terven J., Cordova-Esparza D.: A comprehensive review of YOLO: From YOLOv1 and beyond. arXiv 2023. arXiv preprint arXiv: 2304.00501.
Tian Y. et al.: Role of masks in mitigating viral spread on networks. Physical Review E 108(1), 2023, 014306 DOI: https://doi.org/10.1103/PhysRevE.108.014306
Vibhuti et al.: Face mask detection in COVID-19: a strategic review. Multimedia Tools and Applications 81(28), 2022, 40013–40042. DOI: https://doi.org/10.1007/s11042-022-12999-6
Vrigkas M. et al.: Facemask: A new image dataset for the automated identification of people wearing masks in the wild. Sensors 22(3), 2022, 896. DOI: https://doi.org/10.3390/s22030896
Wani M. A. et al.: Advances in deep learning. Springer, 2020. DOI: https://doi.org/10.1007/978-981-13-6794-6
Wu W. et al.: Application of local fully Convolutional Neural Network combined with YOLO v5 algorithm in small target detection of remote sensing image. PloS one 16(10), 2021, e0259283. DOI: https://doi.org/10.1371/journal.pone.0259283
Yunus E.: YOLO V7 and Computer Vision-Based Mask-Wearing Warning System for Congested Public Areas. Journal of the Institute of Science and Technology 13(1), 2023, 22–32. DOI: https://doi.org/10.21597/jist.1243233
Article Details
Abstract views: 495

