COMPARISON OF THE INFLUENCE OF STANDARDIZATION AND NORMALIZATION OF DATA ON THE EFFECTIVENESS OF SPONGY TISSUE TEXTURE CLASSIFICATION
Róża Dzierżak
r.dzierzak@pollub.plPolitechnika Lubelska (Poland)
http://orcid.org/0000-0001-5640-0204
Abstract
The aim of this article was to compare the influence of the data pre-processing methods – normalization and standardization – on the results of the classification of spongy tissue images. Four hundred CT images of the spine (L1 vertebra) were used for the analysis. The images were obtained from fifty healthy patients and fifty patients with diagnosed with osteoporosis. The samples of tissue (50×50 pixels) were subjected to a texture analysis to obtain descriptors of features based on a histogram of grey levels, gradient, run length matrix, co-occurrence matrix, autoregressive model and wavelet transform. The obtained results were set in the importance ranking (from the most important to the least important), and the first fifty features were used for further experiments. These data were normalized and standardized and then classified using five different methods: naive Bayes classifier, support vector machine, multilayer perceptrons, random forest and classification via regression. The best results were obtained for standardized data and classified by using multilayer perceptrons. This algorithm allowed for obtaining high accuracy of classification at the level of 94.25%.
Keywords:
texture analysis, standardization, normalization, classificationReferences
Budzik G., Dziubek T., Turek P.: Podstawowe czynniki wpływające na jakość obrazów tomograficznych. Problemy Nauk Stosowanych 2015, 77–84.
Google Scholar
Chen Y, Dougherty E.R.: Gray-scale morphological granulometric texture classification. Optical Engineering 33 (8)/1994, 2713–2722.
DOI: https://doi.org/10.1117/12.173552
Google Scholar
Cichy P.: Analiza tekstury obrazów cyfrowych – zastosowanie do wybranej klasy obrazów biomedycznych. Rozprawa doktorska, Politechnika Łódzka, Wydział Elektrotechniki i Elektroniki, Instytut Elektroniki, Łódź 2001.
Google Scholar
Downey P.A., Siegel M.I.: Bone Biology and the Clinical Implications for Osteoporosis. Phys Ther 86/2006, 77–91.
DOI: https://doi.org/10.1093/ptj/86.1.77
Google Scholar
Duda D., Krtowski M., Bézy-Wendling J.: Klasyfikacja tekstur w rozpoznawaniu nowotworów wątroby na podstawie serii obrazów tomograficznych. Obrazowanie Medyczne, tom 1, 2005.
Google Scholar
Duda D., Krętowski M., Bézy-Wendling J.: Ekstrakcja cech teksturalnych w klasyfikacji obrazów tomograficznych wątroby. Zeszyty Naukowe Politechniki Białostockiej, Informatyka, 2007.
Google Scholar
Dzierżak R., Omiotek Z., Tkacz E., Kępa A.: The Influence of the Normalisation of Spinal CT Images on the Significance of Textural Features in the Identification of Defects in the Spongy Tissue Structure. IBE 2018 Innovations in Biomedical Engineering, 2019, 55–66.
DOI: https://doi.org/10.1007/978-3-030-15472-1_7
Google Scholar
Giannakopoulos X., Karhunen J., Oja E.: An Experimental Comparison Of Neural ICA Algorithms. Proc. Int. Conf. on Artificial Neural Networks ICANN’98, 1998, 651–656.
DOI: https://doi.org/10.1007/978-1-4471-1599-1_99
Google Scholar
Ismail Bin M., Dauda U.: Standardization and Its Effects on K-Means Clustering Algorithm. Research Journal of Applied Sciences, Engineering and Technology 6(17)/ 2013, 3299–3303.
DOI: https://doi.org/10.19026/rjaset.6.3638
Google Scholar
Lazarek J.: Metody analizy obrazu – analiza obrazu mammograficznego na podstawie cech wyznaczonych z tekstury. Informatyka, Automatyka Pomiary w Gospodarce i Ochronie Środowiska 4/2013, 10–13.
DOI: https://doi.org/10.5604/20830157.1121332
Google Scholar
Lee T.W., Lewicki M.S.: Unsupervised Imane Classification, Segmentation and Enhancement Using ICA Mixture Models. IEEE Transactions on Image Processing 11(3)/2002, 270-279.
DOI: https://doi.org/10.1109/83.988960
Google Scholar
Lygeros J.: A Formal Approach to Fuzzy Modelling. Proceedings of ACC, 1995, 3740–3744.
Google Scholar
Mala K., Sadasivam V.: Automatic Segmentation and Classification of Diffused Liver Diseases using Wavelet Based Texture Analysis and Neural Network. Annual IEEE INDICON Conference, 2005, 216–219.
Google Scholar
Marcus R., Feldman D., Dempster D., Luckey M., Cauley J.: Osteoporosis, 4th ed. Elsevier Academic Press, 2013.
Google Scholar
Matheron G.: Random sets and integraf geometry. Wiley, New York 1975.
Google Scholar
Nasser Y., Hassouni M., Brahim A., Toumi H., Lespessailles E., Jennane R.: Diagnosis of osteoporosis disease from bone X-ray images with stacked sparse autoencoder and SVM classifier. Proceedings of the 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), 2017, 1–5.
DOI: https://doi.org/10.1109/ATSIP.2017.8075537
Google Scholar
Nieniewski M., Serneels R.: Extraction of the Shape of Small Defects on the Surface of Ferrite Cores. Machine Graphics and Vision 9 (1/2)/2000, 453–462.
Google Scholar
Omiotek, Z.: Improvement of the classification quality in detection of Hashimoto’s disease with a combined classifier approach. Journal of Engineering in Medicine 231(8)/ 2017, 774–782.
DOI: https://doi.org/10.1177/0954411917702682
Google Scholar
Omiotek Z., Wójcik W.: The use of Hellwig’s method for dimension reduction in feature space of thyroid ultrasound images. Informatyka, Automatyka, Pomiary 3/2014, 14–17 [DOI: 10.5604/20830157.1121333].
DOI: https://doi.org/10.5604/20830157.1121333
Google Scholar
Reshmalakshmi C., Sasikumar M.: Trabecular bone quality metric from X-ray images for osteoporosis detection. Proceedings of the 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), India, 2017, 1694–1697.
DOI: https://doi.org/10.1109/ICICICT1.2017.8342826
Google Scholar
Snitkowska E.: Analiza tekstur w obrazach cyfrowych i jej zastosowanie do obrazów angiograficznych, Rozprawa doktorska, Politechnika Warszawska, 2004.
Google Scholar
Strzelecki M., Materka A.: Tekstura obrazów biomedycznych. Metody analizy komputerowej. Wydawnictwo PWN, Warszawa 2017.
Google Scholar
Tadeusiewicz R., Śmietański J.: Pozyskiwanie obrazów medycznych oraz ich przetwarzanie, analiza, automatyczne rozpoznawanie i diagnostyczna interpretacja. Wydawnictwo Studenckiego Towarzystwa Naukowego, Kraków 2011.
Google Scholar
Titus A., Nehemiah H., Kannan A.: Classification of interstitial lung disease using particle swarm optimized support vector machines. International Journal of Soft Computing 10 (1)/2015, 25–36.
Google Scholar
Usman, K., Rajpoot, K.: Brain tumor classification from multi-modality MRI using wavelets and machine learning. Pattern Analysis and Applications 20(3)/2017, 871–881.
DOI: https://doi.org/10.1007/s10044-017-0597-8
Google Scholar
www.eletel.p.lodz.pl/programy/cost/progr_mazda.html [06.05.2018].
Google Scholar
Authors
Róża Dzierżakr.dzierzak@pollub.pl
Politechnika Lubelska Poland
http://orcid.org/0000-0001-5640-0204
Statistics
Abstract views: 475PDF downloads: 273
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Róża Dzierżak, THE INFLUENCE OF THE PRINCIPAL COMPONENT ANALYSIS OF TEXTURE FEATURES ON THE CLASSIFICATION QUALITY OF SPONGE TISSUE IMAGES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 10 No. 3 (2020)
- Róża Dzierżak, Magdalena Michalska, ANALYSIS OF THE EFFECTIVENESS OF SELECTED SEGMENTATION METHODS OF ANATOMICAL BRAIN STRUCTURES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 2 (2018)