USING SUPPORT VECTORS TO BUILD A RULE-BASED SYSTEM FOR DETECTING MALICIOUS PROCESSES IN AN ORGANISATION'S NETWORK TRAFFIC
Article Sidebar
Open full text
Issue Vol. 14 No. 4 (2024)
-
IDENTIFICATION OF AN ARBITRARY SHAPE RIGID OBSTACLE ILLUMINATED BY FLAT ACOUSTIC WAVE USING NEAR FIELD DATA
Tomasz Rymarczyk, Jan Sikora5-9
-
RADIO FREQUENCY BASED INPAINTING FOR INDOOR LOCALIZATION USING MEMORYLESS TECHNIQUES AND WIRELESS TECHNOLOGY
Tammineni Shanmukha Prasanthi, Swarajya Madhuri Rayavarapu, Gottapu Sasibhushana Rao, Raj Kumar Goswami, Gottapu Santosh Kumar10-15
-
INTELLIGENT MATCHING TECHNIQUE FOR FLEXIBLE ANTENNAS
Olena Semenova, Andriy Semenov, Stefan Meulesteen, Natalia Kryvinska, Hanna Pastushenko16-22
-
DIFFERENTIAL MUELLER-MATRIX MAPPING OF THE POLYCRYSTALLINE COMPONENT OF BIOLOGICAL TISSUES OF HUMAN ORGANS
Andrei Padure, Oksana Bakun, Ivan Mikirin, Oleksandr Dubolazov, Iryna Soltys, Oleksandr Olar, Yuriy Ushenko, Oleksandr Ushenko, Irina Palii, Saule Kumargazhanova23-27
-
POLARIZATION SELECTOR ON WAVEGUIDES PARTIALLY FILLED BY DIELECTRIC
Vitaly Pochernyaev, Nataliia Syvkova, Mariia Mahomedova28-31
-
FUNCTIONALLY INTEGRATED DEVICE FOR TEMPERATURE MEASUREMENT
Les Hotra, Oksana Boyko, Igor Helzhynskyy, Hryhorii Barylo, Marharyta Rozhdestvenska, Halyna Lastivka32-37
-
STUDY OF THE OZONE CONTROL PROCESS USING ELECTRONIC SENSORS
Sunggat Marxuly, Askar Abdykadyrov, Katipa Chezhimbayeva, Nurzhigit Smailov38-45
-
OPTIMIZING WIND POWER PLANTS: COMPARATIVE ENHANCEMENT IN LOW WIND SPEED ENVIRONMENTS
Mustafa Hussein Ibrahim, Muhammed A. Ibrahim, Salam Ibrahim Khather46-51
-
PV SYSTEM MPPT CONTROL: A COMPARATIVE ANALYSIS OF P&O, INCCOND, SMC AND FLC ALGORITHMS
Khoukha Bouguerra, Samia Latreche, Hamza Khemlche, Mabrouk Khemliche52-62
-
DSTATCOM-BASED 15 LEVEL ASYMMETRICAL MULTILEVEL INVERTER FOR IMPROVING POWER QUALITY
Panneerselvam Sundaramoorthi, Govindasamy Saravana Venkatesh63-70
-
COMPUTER SIMULATION OF A SUPERCONDUCTING TRANSFORMER SHORT-CIRCUIT
Leszek Jaroszyński71-74
-
AI-BASED FIELD-ORIENTED CONTROL FOR INDUCTION MOTORS
Elmehdi Benmalek, Marouane Rayyam, Ayoub Gege, Omar Ennasiri, Adil Ezzaidi75-81
-
INVESTIGATION OF CHANGES IN THE LEVEL OF NETWORK SECURITY BASED ON A COGNITIVE APPROACH
Olha Saliieva, Yurii Yaremchuk82-85
-
THE UTILIZATION OF MACHINE LEARNING FOR NETWORK INTRUSION DETECTION SYSTEMS
Ahmad Sanmorino, Herri Setiawan, John Roni Coyanda86-89
-
USING SUPPORT VECTORS TO BUILD A RULE-BASED SYSTEM FOR DETECTING MALICIOUS PROCESSES IN AN ORGANISATION'S NETWORK TRAFFIC
Halyna Haidur, Sergii Gakhov, Dmytro Hamza90-96
-
EXTRACTING EMOTION-CAUSE PAIRS: A BILSTM-DRIVEN METHODOLOGY
Raga Madhuri Chandra, Giri Venkata Sai Tej Neelaiahgari, Satya Sumanth Vanapalli97-103
-
IMPROVING α-PARAMETERIZED DIFFERENTIAL TRANSFORM METHOD WITH DANDELION OPTIMIZER FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS
Mustafa Raed Najeeb, Omar Saber Qasim104-108
-
THE METHOD OF ADAPTIVE STATISTICAL CODING TAKING INTO ACCOUNT THE STRUCTURAL FEATURES OF VIDEO IMAGES
Volodymyr Barannik, Dmytro Havrylov, Serhii Pantas, Yurii Tsimura, Tatayna Belikova, Rimma Viedienieva, Vasyl Kryshtal109-114
-
OPTIMIZING TIME SERIES FORECASTING: LEVERAGING MACHINE LEARNING MODELS FOR ENHANCED PREDICTIVE ACCURACY
Waldemar Wójcik, Assem Shayakhmetova, Ardak Akhmetova, Assel Abdildayeva, Galymzhan Nurtugan115-120
-
SYNCHRONIZATION OF EVENT-DRIVEN MANAGEMENT DURING DATA COLLECTION
Valeriy Kuzminykh, Oleksandr Koval, Yevhen Havrylko, Beibei Xu, Iryna Yepifanova, Shiwei Zhu, Nataliia Bieliaieva, Bakhyt Yeraliyeva121-129
-
INTERFACE LAYOUT VERSUS EFFICIENCY OF INFORMATION ASSIMILATION IN THE LEARNING PROCESS
Julia Zachwatowicz, Oliwia Zioło, Mariusz Dzieńkowski130-135
-
AUTOMATED WATER MANAGEMENT SYSTEM WITH AI-BASED DE-MAND PREDICTION
Arman Mohammad Nakib136-140
-
UML DIAGRAMS OF THE MANAGEMENT SYSTEM OF MAINTENANCE STATIONS
Lyudmila Samchuk, Yuliia Povstiana141-145
-
DEFECT SEVERITY CODE PREDICTION BASED ON ENSEMBLE LEARNING
Ghada Mohammad Tahir Aldabbagh, Safwan Omar Hasoon146-153
-
AFFORDABLE AUGMENTED REALITY FOR SPINE SURGERY: AN EMPIRICAL INVESTIGATION INTO IMPROVING VISUALIZATION AND SURGICAL ACCURACY
Iqra Aslam, Muhammad Jasim Saeed, Zarmina Jahangir, Kanza Zafar, Muhammad Awais Sattar154-163
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
Main Article Content
DOI
Authors
Abstract
The growing complexity and sophistication of cyberattacks on organisational information resources and the variety of malware processes in unprotected networks necessitate the development of advanced methods for detecting malicious processes in network traffic. Systems for detecting malicious processes based on machine learning and rule-based methods have their advantages and disadvantages. We have investigated the possibility of using support vectors to create a rule-based system for detecting malicious processes in an organisation's network traffic. We propose a method for building a rule-based system for detecting malicious processes in an organisation's network traffic using the distribution data of the relevant features of support vectors. The application of this method on real CSE-CIC-IDS2018 network traffic data containing characteristics of malicious processes has shown acceptable accuracy, high clarity and computational efficiency in detecting malicious processes in network traffic. In our opinion, the results of this study will be useful in creating automatic systems for detecting malicious processes in the network traffic of organisations and in creating and using synthetic data in such systems.
Keywords:
References
[1] A Realistic Cyber Defense Dataset (CSE-CIC-IDS2018) [https://registry.opendata.aws/cse-cic-ids2018] (available: 21.05.2024).
[2] Arrieta A. B. et al.: Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion 58, 2020, 82–115 [https://doi.org/10.1016/j.inffus.2019.12.012]. DOI: https://doi.org/10.1016/j.inffus.2019.12.012
[3] Barakat N., Bradley A. P.: Rule extraction from support vector machines: A review. Neurocomputing 74(1), 2010, 178–190 [https://doi.org/10.1016/j.neucom.2010.02.016]. DOI: https://doi.org/10.1016/j.neucom.2010.02.016
[4] Barakat N., Bradley A. P.: Rule Extraction from Support Vector Machines: A Sequential Covering Approach. IEEE Transactions on Knowledge and Data Engineering 19, 2007, 729–741. DOI: https://doi.org/10.1109/TKDE.2007.190610
[5] Barbado A., Corcho O., Benjamins R.: Rule extraction in unsupervised anomaly detection for model explainability: Application to OneClass SVM. Expert Systems With Applications 189(1), 2022 [https://doi.org/10.1016/j.eswa.2021.116100]. DOI: https://doi.org/10.1016/j.eswa.2021.116100
[6] Bologna G, Hayashi Y.: A Rule Extraction Study from SVM on Sentiment Analysis. Big Data and Cognitive Computing 2(1), 2018 [https://doi.org/10.3390/bdcc2010006]. DOI: https://doi.org/10.3390/bdcc2010006
[7] Fung G., Sandilya S., Rao R. B.: Rule extraction from linear support vector machines. Eleventh ACM SIGKDD international conference on Knowledge discovery in data mining (KDD '05). USA, NY, New York, 2005, 32–40 [https://doi.org/10.1145/1081870.1081878]. DOI: https://doi.org/10.1145/1081870.1081878
[8] Hao J., Luo S., Pan L.: Rule extraction from biased random forest and fuzzy support vector machine for early diagnosis of diabetes. Scientific Reports 12(9858), 2022 [https://doi.org/10.1038/s41598-022-14143-8]. DOI: https://doi.org/10.1038/s41598-022-14143-8
[9] Hopgood A. A.: Intelligent Systems for Engineers and Scientists: A Practical Guide to Artificial Intelligence (4th ed.). CRC Press 2022 [https://doi.org/10.1201/9781003226277]. DOI: https://doi.org/10.1201/9781003226277
[10] Jiawei Z., Hongyang J., Ning Z.: Alternate Support Vector Machine Decision Trees for Power Systems Rule Extractions. TechRxiv. 11, 2022 [https://doi.org/10.36227/techrxiv.20445150.v1]. DOI: https://doi.org/10.36227/techrxiv.20445150.v1
[11] Kambourakis G. et al.: Botnets: Architectures, Countermeasures, and Challenges (1st ed.). CRC Press, 2019 [https://doi.org/10.1201/9780429329913]. DOI: https://doi.org/10.1201/9780429329913
[12] Kašćelan L., Kašćelan V. Jovanović M.: Hybrid support vector machine rule extraction method for discovering the preferences of stock market investors: Evidence from Montenegro. Intelligent Automation & Soft Computing 21(4), 2014, 503–522 [https://doi.org/10.1080/10798587.2014.971500]. DOI: https://doi.org/10.1080/10798587.2014.971500
[13] Martens D., Baesens B. B., Van Gestel T.: Decompositional Rule Extraction from Support Vector Machines by Active Learning. IEEE Transactions on Knowledge and Data Engineering 21(2), 2009, 178–191 [https://doi.org/10.1109/TKDE.2008.131]. DOI: https://doi.org/10.1109/TKDE.2008.131
[14] Newman J.: A Taxonomy of Trustworthiness for Artificial Intelligence. CLTC. White Paper. January 2023. [https://cltc.berkeley.edu/publication/a-taxonomy-of-trustworthiness-for-artificial-intelligence/] (available: 21.05.2024).
[15] Núñez H., Angulo C., Català A.: Rule extraction from support vector machines. European Symposium on Artificial Neural Networks (ESANN'2002). Belgium, Bruges, 2002, 107–112.
[16] Núñez H., Angulo C., Català A.: Rule-Based Learning Systems for Support Vector Machines. Neural Process Lett 24, 2006, 1–18 [https://doi.org/10.1007/s11063-006-9007-8]. DOI: https://doi.org/10.1007/s11063-006-9007-8
[17] Shigeo Abe: Support Vector Machines for Pattern Classification. Second Edition. Springer-Verlag London Limited 2005, 2010 [https://doi.org/10.1007/978-1-84996-098-4]. DOI: https://doi.org/10.1007/978-1-84996-098-4
[18] Tian Y., Shi Y., Liu X.: Recent Advances on Support Vector Machines Research. Technological and Economic Development of Economy 18(1), 2012, 5–33 [https://doi.org/10.3846/20294913.2012.661205]. DOI: https://doi.org/10.3846/20294913.2012.661205
[19] Yang S. X., Tian Y. J., Zhang C. H.: Rule Extraction from Support Vector Machines and Its Applications. IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology. France, Lyon, 2011, 221–224 [https://doi.org/10.1109/WI-IAT.2011.132]. DOI: https://doi.org/10.1109/WI-IAT.2011.132
[20] Zhu P., Hu Q.: Rule extraction from support vector machines based on consistent region covering reduction. Knowledge-Based Systems 42, 2013, 1–8 [https://doi.org/10.1016/j.knosys.2012.12.003]. DOI: https://doi.org/10.1016/j.knosys.2012.12.003
Article Details
Abstract views: 238

