INTELLIGENT MATCHING TECHNIQUE FOR FLEXIBLE ANTENNAS
Article Sidebar
Open full text
Issue Vol. 14 No. 4 (2024)
-
IDENTIFICATION OF AN ARBITRARY SHAPE RIGID OBSTACLE ILLUMINATED BY FLAT ACOUSTIC WAVE USING NEAR FIELD DATA
Tomasz Rymarczyk, Jan Sikora5-9
-
RADIO FREQUENCY BASED INPAINTING FOR INDOOR LOCALIZATION USING MEMORYLESS TECHNIQUES AND WIRELESS TECHNOLOGY
Tammineni Shanmukha Prasanthi, Swarajya Madhuri Rayavarapu, Gottapu Sasibhushana Rao, Raj Kumar Goswami, Gottapu Santosh Kumar10-15
-
INTELLIGENT MATCHING TECHNIQUE FOR FLEXIBLE ANTENNAS
Olena Semenova, Andriy Semenov, Stefan Meulesteen, Natalia Kryvinska, Hanna Pastushenko16-22
-
DIFFERENTIAL MUELLER-MATRIX MAPPING OF THE POLYCRYSTALLINE COMPONENT OF BIOLOGICAL TISSUES OF HUMAN ORGANS
Andrei Padure, Oksana Bakun, Ivan Mikirin, Oleksandr Dubolazov, Iryna Soltys, Oleksandr Olar, Yuriy Ushenko, Oleksandr Ushenko, Irina Palii, Saule Kumargazhanova23-27
-
POLARIZATION SELECTOR ON WAVEGUIDES PARTIALLY FILLED BY DIELECTRIC
Vitaly Pochernyaev, Nataliia Syvkova, Mariia Mahomedova28-31
-
FUNCTIONALLY INTEGRATED DEVICE FOR TEMPERATURE MEASUREMENT
Les Hotra, Oksana Boyko, Igor Helzhynskyy, Hryhorii Barylo, Marharyta Rozhdestvenska, Halyna Lastivka32-37
-
STUDY OF THE OZONE CONTROL PROCESS USING ELECTRONIC SENSORS
Sunggat Marxuly, Askar Abdykadyrov, Katipa Chezhimbayeva, Nurzhigit Smailov38-45
-
OPTIMIZING WIND POWER PLANTS: COMPARATIVE ENHANCEMENT IN LOW WIND SPEED ENVIRONMENTS
Mustafa Hussein Ibrahim, Muhammed A. Ibrahim, Salam Ibrahim Khather46-51
-
PV SYSTEM MPPT CONTROL: A COMPARATIVE ANALYSIS OF P&O, INCCOND, SMC AND FLC ALGORITHMS
Khoukha Bouguerra, Samia Latreche, Hamza Khemlche, Mabrouk Khemliche52-62
-
DSTATCOM-BASED 15 LEVEL ASYMMETRICAL MULTILEVEL INVERTER FOR IMPROVING POWER QUALITY
Panneerselvam Sundaramoorthi, Govindasamy Saravana Venkatesh63-70
-
COMPUTER SIMULATION OF A SUPERCONDUCTING TRANSFORMER SHORT-CIRCUIT
Leszek Jaroszyński71-74
-
AI-BASED FIELD-ORIENTED CONTROL FOR INDUCTION MOTORS
Elmehdi Benmalek, Marouane Rayyam, Ayoub Gege, Omar Ennasiri, Adil Ezzaidi75-81
-
INVESTIGATION OF CHANGES IN THE LEVEL OF NETWORK SECURITY BASED ON A COGNITIVE APPROACH
Olha Saliieva, Yurii Yaremchuk82-85
-
THE UTILIZATION OF MACHINE LEARNING FOR NETWORK INTRUSION DETECTION SYSTEMS
Ahmad Sanmorino, Herri Setiawan, John Roni Coyanda86-89
-
USING SUPPORT VECTORS TO BUILD A RULE-BASED SYSTEM FOR DETECTING MALICIOUS PROCESSES IN AN ORGANISATION'S NETWORK TRAFFIC
Halyna Haidur, Sergii Gakhov, Dmytro Hamza90-96
-
EXTRACTING EMOTION-CAUSE PAIRS: A BILSTM-DRIVEN METHODOLOGY
Raga Madhuri Chandra, Giri Venkata Sai Tej Neelaiahgari, Satya Sumanth Vanapalli97-103
-
IMPROVING α-PARAMETERIZED DIFFERENTIAL TRANSFORM METHOD WITH DANDELION OPTIMIZER FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS
Mustafa Raed Najeeb, Omar Saber Qasim104-108
-
THE METHOD OF ADAPTIVE STATISTICAL CODING TAKING INTO ACCOUNT THE STRUCTURAL FEATURES OF VIDEO IMAGES
Volodymyr Barannik, Dmytro Havrylov, Serhii Pantas, Yurii Tsimura, Tatayna Belikova, Rimma Viedienieva, Vasyl Kryshtal109-114
-
OPTIMIZING TIME SERIES FORECASTING: LEVERAGING MACHINE LEARNING MODELS FOR ENHANCED PREDICTIVE ACCURACY
Waldemar Wójcik, Assem Shayakhmetova, Ardak Akhmetova, Assel Abdildayeva, Galymzhan Nurtugan115-120
-
SYNCHRONIZATION OF EVENT-DRIVEN MANAGEMENT DURING DATA COLLECTION
Valeriy Kuzminykh, Oleksandr Koval, Yevhen Havrylko, Beibei Xu, Iryna Yepifanova, Shiwei Zhu, Nataliia Bieliaieva, Bakhyt Yeraliyeva121-129
-
INTERFACE LAYOUT VERSUS EFFICIENCY OF INFORMATION ASSIMILATION IN THE LEARNING PROCESS
Julia Zachwatowicz, Oliwia Zioło, Mariusz Dzieńkowski130-135
-
AUTOMATED WATER MANAGEMENT SYSTEM WITH AI-BASED DE-MAND PREDICTION
Arman Mohammad Nakib136-140
-
UML DIAGRAMS OF THE MANAGEMENT SYSTEM OF MAINTENANCE STATIONS
Lyudmila Samchuk, Yuliia Povstiana141-145
-
DEFECT SEVERITY CODE PREDICTION BASED ON ENSEMBLE LEARNING
Ghada Mohammad Tahir Aldabbagh, Safwan Omar Hasoon146-153
-
AFFORDABLE AUGMENTED REALITY FOR SPINE SURGERY: AN EMPIRICAL INVESTIGATION INTO IMPROVING VISUALIZATION AND SURGICAL ACCURACY
Iqra Aslam, Muhammad Jasim Saeed, Zarmina Jahangir, Kanza Zafar, Muhammad Awais Sattar154-163
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
Main Article Content
DOI
Authors
Abstract
Flexible antennas have revolutionized the wireless communication as integral components of modern smart devices. Their unique properties are design flexibility, enhanced performance, and seamless implementation in smart devices. However, when designing antennas, multiple conflicting objectives often need to be considered simultaneously. Incorporating artificial neural networks into optimization strategies has shown promising results in antenna design problems. Neural networks can adapt to different and changeable requirements and constraints. That is why they are valuable tools for customizing antennas to specific operating conditions. The utilization of artificial neural networks for the design of flexible antennas enables researchers to expand the design space, optimize antenna characteristics with greater efficiency, and identify innovative solutions that may not be apparent through traditional design methods. In this study, the authors propose to determine required parameters and characteristics of flexible antennas by using Artificial Intelligence techniques, namely fuzzy logic, neural networks, and genetic algorithms. A matching technique based on neural network for designing flexible antennas has been elaborated. A neural network was developed. To train the neural network, several samples of flexible antenna were manufactured and tested. The developed neural network was simulated. Finally, the obtained flexible antenna was tested.
Keywords:
References
[1] Aggarwal C. C.: Neural Networks and Deep Learning. Springer International Publishing, 2023 [https://doi.org/10.1007/978-3-031-29642-0]. DOI: https://doi.org/10.1007/978-3-031-29642-0_13
[2] Al-Haddad M. A. S. M., Jamel N., Nordin A. N.: Flexible Antenna: A Review of Design, Materials, Fabrication, and Applications. Journal of Physics: Conference Series 1878(1), 2021, 012068 [https://doi.org/10.1088/1742-6596/1878/1/012068]. DOI: https://doi.org/10.1088/1742-6596/1878/1/012068
[3] Arunprasad V., Gupta B., Karthikeyan T., Ponnusamy M.: Hybrid neuro-fuzzy-genetic algorithms for optimal control of autonomous systems. ICTACT Journal on Soft Computing 13(4), 2023, 3015–3020 [https://doi.org/10.21917/ijsc.2023.0424]. DOI: https://doi.org/10.21917/ijsc.2023.0424
[4] Bai Z.: Research on Application of Artificial Intelligence in Communication Network. Journal of Physics: Conference Series 2209(1), 2022, 012014 [https://doi.org/10.1088/1742-6596/2209/1/012014]. DOI: https://doi.org/10.1088/1742-6596/2209/1/012014
[5] Bhalke D., Paikrao P. D., Anguera J.: Deep Learning-based Beamforming Approach Incorporating Linear Antenna Arrays. Journal of Telecommunications and Information Technology 2(2), 2024, 66–70 [https://doi.org/10.26636/jtit.2024.2.1530]. DOI: https://doi.org/10.26636/jtit.2024.2.1530
[6] Hamrouni C., Alutaybi A., Chaoui S.: Various Antenna Structures Performance Analysis based Fuzzy Logic Functions. International Journal of Advanced Computer Science and Applications 13(1), 2022 [https://doi.org/10.14569/ijacsa.2022.0130109]. DOI: https://doi.org/10.14569/IJACSA.2022.0130109
[7] Ishaque M., Johar M. G. M., Khatibi A., Yamin M.: A novel hybrid technique using fuzzy logic, neural networks and genetic algorithm for intrusion detection system. Measurement: Sensors 30, 2023, 100933 [https://doi.org/10.1016/j.measen.2023.100933]. DOI: https://doi.org/10.1016/j.measen.2023.100933
[8] Islamov I.: Optimization of Broadband Microstrip Antenna Device for 5G Wireless Communication Systems. Transport and Telecommunication Journal 24(4), 2023, 409–422 [https://doi.org/10.2478/ttj-2023-0032]. DOI: https://doi.org/10.2478/ttj-2023-0032
[9] Kahraman C., Onar S., Oztaysi B., Cebi S.: Role of Fuzzy Sets on Artificial Intelligence Methods: A literature Review. Transactions on Fuzzy Sets and Systems 1(2), 2023, 158-178 [https://doi.org/10.30495/tfss.2023.1976303.1060]. DOI: https://doi.org/10.1007/978-3-031-39438-6_1
[10] Kayabasi A.: Triangular Ring Patch Antenna Analysis: Neuro-Fuzzy Model for Estimating of the Operating Frequency. ACES Journal 36(11), 2021, 1412–1417 [https://doi.org/10.13052/2021.aces.j.361104]. DOI: https://doi.org/10.13052/2021.ACES.J.361104
[11] Kirtania S. G., Elger A. W., Hasan Md. R., Wisniewska A., Sekhar K., Karacolak T., Sekhar P. K.: Flexible Antennas: A Review. Micromachines 11(9), 2020, 847 [https://doi.org/10.3390/mi11090847]. DOI: https://doi.org/10.3390/mi11090847
[12] Korkmaz S., Alibakhshikenari M., Kouhalvandi L.: A Framework for Optimizing Antenna Through Genetic Algorithm-Based Neural Network. Acta Marisiensis. Seria Technologica 20(1), 2023, 49–53 [https://doi.org/10.2478/amset-2023-0009]. DOI: https://doi.org/10.2478/amset-2023-0009
[13] Kushwah V. S., Tomar G. S.: Design and Analysis of Microstrip Patch Antennas Using Artificial Neural Network. Trends in Research on Microstrip Antennas. InTech, 2017 [https://doi.org/10.5772/intechopen.69522]. DOI: https://doi.org/10.5772/intechopen.69522
[14] Lahiani M. A., Raida Z., Veselý J., Olivová J.: Pre-Design of Multi-Band Planar Antennas by Artificial Neural Networks. Electronics 12(6), 2023, 1345 [https://doi.org/10.3390/electronics12061345]. DOI: https://doi.org/10.3390/electronics12061345
[15] Meulesteen S., Semenov A.O., Semenova O., Koval K., Datsiuk D., Fomenko H.: Cellular Lifesaving Flexible Device. 5th International Conference on Nanotechnologies and Biomedical Engineering ICNBME-2021 [https://doi.org/10.1007/978-3-030-92328-0_50]. DOI: https://doi.org/10.1007/978-3-030-92328-0_50
[16] Mohamed N.: Importance of Artificial Intelligence in Neural Network through using MediaPipe. 6th International Conference on Electronics, Communication and Aerospace Technology ICECA, 2022 [https://doi.org/10.1109/iceca55336.2022.10009513]. DOI: https://doi.org/10.1109/ICECA55336.2022.10009513
[17] Naganaik M.: Design of Printed Antennas Using Hybrid Soft Computing Methods. International Journal for Research in Applied Science and Engineering Technology – IJRASET 6(4), 2018 [https://doi.org/10.22214/ijraset.2018.4704]. DOI: https://doi.org/10.22214/ijraset.2018.4704
[18] Panagiotou S. C., Thomopoulos S. C. A., Capsalis C. N.: Genetic Algorithms in Antennas and Smart Antennas Design Overview: Two Novel Antenna Systems for Triband GNSS Applications and a Circular Switched Parasitic Array for WiMax Applications Developments with the Use of Genetic Algorithms. International Journal of Antennas and Propagation 2014, 729208 [https://doi.org/10.1155/2014/729208]. DOI: https://doi.org/10.1155/2014/729208
[19] Ramasamy R., Anto Bennet M.: An Efficient Antenna Parameters Estimation Using Machine Learning Algorithms. Progress in Electromagnetics Research C 130, 2023, 169–181 [https://doi.org/10.2528/pierc22121004]. DOI: https://doi.org/10.2528/PIERC22121004
[20] Saçın E. S., Durgun A. C.: Neural Network Modeling of Antennas on Package for 5G Applications. 17th European Conference on Antennas and Propagation (EuCAP), Florence, Italy, 2023, 1–5 [https://doi.org/10.23919/EuCAP57121.2023.10133407]. DOI: https://doi.org/10.23919/EuCAP57121.2023.10133407
[21] Samantaray B., Das K. K., Roy J. S.: Designing Smart Antennas Using Machine Learning Algorithms. Journal of Telecommunications and Information Technology 4, 2023, 46–52 [https://doi.org/10.26636/jtit.2023.4.1329]. DOI: https://doi.org/10.26636/jtit.2023.4.1329
[22] Semenov A., Pastushenko A., Semenova O., Koval K.: Flexible Antenna for LTE-M1 Wearables. Physical and technological problems of transmission, processing and storage of information in infocommunication systems. IX International Scientific Practical Conference Physical and Technological Problems of Transmission, Processing and Storage of Information in Infocommunication Systems, Chernivtsi-Suceava 2021, 49–50.
[23] Semenov A., Semenova O., Meulesteen S.: Flexible Antenna for Cellular IoT Device. IEEE 2nd Ukrainian Microwave Week UkrMW, Ukraine 2022, 293–298 [https://doi.org/10.1109/UkrMW58013.2022.10037036]. DOI: https://doi.org/10.1109/UkrMW58013.2022.10037036
[24] Semenov A., Semenova O., Meulesteen S., Koval K., Datsiuk D., Fomenko H., Ageyev D.: Cellular IoT Personal Health and Safety Monitoring. IEEE 9th International Conference on Problems of Infocommunications, Science and Technology PIC S&T 2022
[https://doi.org/10.1109/picst57299.2022.10238557]. DOI: https://doi.org/10.1109/PICST57299.2022.10238557
[25] Semenov A., Semenova O., Pinaiev B., Kulias R., Shpylovyi O.: Development of a flexible antenna-wristband for wearable wrist-worn infocommunication devices of the LTE standard. Technology audit and production reserves 3(1), 2022, 20–26 [https://doi.org/10.15587/2706-5448.2022.261718]. DOI: https://doi.org/10.15587/2706-5448.2022.261718
[26] Sharma K., Pandey G. P.: Designing a Compact Microstrip Antenna Using the Machine Learning Approach. Journal of Telecommunications and Information Technology 4, 2020, 44–52
[https://doi.org/10.26636/jtit.2020.143520]. DOI: https://doi.org/10.26636/jtit.2020.143520
[27] da Silva I. N., Hernane Spatti D., Andrade Flauzino R., Liboni L. H. B., dos Reis Alves S. F.: Artificial Neural Networks. Springer International Publishing, 2017 [https://doi.org/10.1007/978-3-319-43162-8]. DOI: https://doi.org/10.1007/978-3-319-43162-8
[28] Singh P., Panda S. S., Dash J. C., Riscob B., Pathak S. K., Hegde R. S.: Rapid Multi-Objective Inverse Design of Antenna Via Deep Neural Network Surrogate-Driven Evolutionary Optimization. TechRxiv. June 03, 2024 [https://doi.org/10.36227/techrxiv.171742511.11489750/v1]. DOI: https://doi.org/10.36227/techrxiv.171742511.11489750/v1
[29] Sohail A.: Genetic Algorithms in the Fields of Artificial Intelligence and Data Sciences. Annals of Data Science 10(4), 2021, 1007–1018 [https://doi.org/10.1007/s40745-021-00354-9]. DOI: https://doi.org/10.1007/s40745-021-00354-9
[30] Wang Z., Qin J., Hu Z., He J., Tang, D.: Multi-Objective Antenna Design Based on BP Neural Network Surrogate Model Optimized by Improved Sparrow Search Algorithm. Applied Sciences 12(24), 2022, 12543 [https://doi.org/10.3390/app122412543]. DOI: https://doi.org/10.3390/app122412543
[31] Zhang X.-S.: Neural Networks in Optimization. In: Zhang X.-S.: Nonconvex Optimization and Its Applications. Springer US, New York 2013 [https://doi.org/10.1007/978-1-4757-3167-5]. DOI: https://doi.org/10.1007/978-1-4757-3167-5
[32] Zhang X.-Y., Tian Y.-B., Zheng X.: Antenna Optimization Design Based on Deep Gaussian Process Model. International Journal of Antennas and Propagation 2020, 2154928 [https://doi.org/10.1155/2020/2154928]. DOI: https://doi.org/10.1155/2020/2154928
Article Details
Abstract views: 224

