IDENTIFICATION OF AN ARBITRARY SHAPE RIGID OBSTACLE ILLUMINATED BY FLAT ACOUSTIC WAVE USING NEAR FIELD DATA
Tomasz Rymarczyk
1Research & Development Centre Netrix S.A., 2WSEI University, Faculty of Transport and Informatics (Poland)
https://orcid.org/0000-0002-3524-9151
Jan Sikora
sik59@wp.pl1Research & Development Centre Netrix S.A., 2WSEI University, Faculty of Transport and Informatics (Poland)
https://orcid.org/0000-0002-9492-5818
Abstract
The inverse problem concerning the identification of rigid surfaces of scattering objects formulated in the frequency domain is presented in this paper. Differences in the identification of concave objects, such as kite-shaped, and convex objects (circle) are indicated. The reader’s attention is focused on the conventional boundary element method with small number of boundary elements and the small number of sensors, which is significant for inverse problems.
Keywords:
acoustics wave scattering by arbitrary shaped objects, simulation of external acoustic problems using the Boundary Element Method (BEM), inverse problemReferences
[1] Abramowitz M., Stegun I. A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. John Wiley, New York 1973.
Google Scholar
[2] Akylas T. R., Mei C. C.: I-campus project School-wide Program on Fluid Mechanics Modules on Waves in fluids. Chapter Five of Reflection, Transmission and Diffraction [http://web.mit.edu/fluids-modules/waves/www/ c-index.html].
Google Scholar
[3] Baynes A. B.: Scattering of low-frequency sound by compact objects in underwater waveguides. PhD Dissertation. Naval Postgraduate School, Monterey, California 2018.
Google Scholar
[4] Becker A. A.: The boundary Element Method in Engineering. A complete course. McGraw-Hill Book Company 1992.
Google Scholar
[5] Cakoni F., Colton D.: A Qualitative Approach to Inverse Scattering Theory. Applied Mathematical Sciences 188. Springer 2014.
Google Scholar
[6] Colton D., Kress R.: Integral Equation Methods in Scattering Theory. Springer 1993.
Google Scholar
[7] Jabłoński P.: Engineering Physics – Electromagnetism. Częstochowa University of Technology 2009.
Google Scholar
[8] Jeong C., Na S.-W., Kallivokas L. F.: Near-surface localization and shape identification of a scatterer embedded in a halfplane using scalar waves. Journal of Computational Acoustics 17(3), 2009, 277–308.
Google Scholar
[9] Kirkup S., The Boundary Element Method in Acoustics: A Survey. Applied Sciences 9(8), 2019, 1642 [https://doi.org/10.3390/app9081642].
Google Scholar
[10] Kirkup S.: The Boundary Element Method in Acoustics. Book in Journal of Computational Acoustics 2007.
Google Scholar
[11] Li P., Wang Y.: Numerical solution of an inverse obstacle scattering problem with near-field data. Journal of Computational Physics 290, 2015, 157–168.
Google Scholar
[12] Lynott G. M.: Efficient numerical evaluation of the scattering of acoustic and elastic waves by arrays of cylinders of arbitrary cross section. Thesis of Doctor of Philosophy. University of Manchester, School of Natural Sciences, Department of Mathematics, 2020.
Google Scholar
[13] Rymarczyk T.: Tomographic Imaging in Environmental, Industrial and Medical Applications. Innovatio Press Publishing Hause, Lublin 2019.
Google Scholar
[14] Sikora J.: Boundary Element Method for Impedance and Optical Tomography. Warsaw University of Technology Publishing Hause, Warsaw 2007.
Google Scholar
[15] https://www.mathworks.com/products/matlab.html
Google Scholar
Authors
Tomasz Rymarczyk1Research & Development Centre Netrix S.A., 2WSEI University, Faculty of Transport and Informatics Poland
https://orcid.org/0000-0002-3524-9151
Authors
Jan Sikorasik59@wp.pl
1Research & Development Centre Netrix S.A., 2WSEI University, Faculty of Transport and Informatics Poland
https://orcid.org/0000-0002-9492-5818
Statistics
Abstract views: 14PDF downloads: 6
Most read articles by the same author(s)
- Tomasz Rymarczyk, TOPOLOGICAL ALGORITHMS TO SOLVE INVERSE PROBLEM IN ELECTRICAL TOMOGRAPHY , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 1 (2017)
- Tomasz Rymarczyk, Paweł Tchórzewski, Jan Sikora, DETECTION OF AIR GAPS IN COPPER-MINE CEILING BY ELECTRICAL IMPEDANCE TOMOGRAPHY , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 1 (2017)
- Tomasz Rymarczyk, Jan Sikora, SCATTERING BY CIRCULAR VOIDS WITH RIGID BOUNDARY: DIRECT AND INVERSE PROBLEMS FOR OPEN AND CLOSE DOMAINS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 12 No. 4 (2022)
- Maciej Pańczyk, Jan Sikora, BOUNDARY ELEMENT METHOD MODYFICATIONS FOR USE IN SOME IMPEDANCE AND OPTICAL TOMOGRAPHY APPLICATIONS , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 1 (2017)
- Tomasz Rymarczyk, Przemysław Adamkiewicz, MONITORING DAMAGE AND DAMPNESS IN FLOOD EMBANKMENT BY ELECTRICAL IMPEDANCE TOMOGRAPHY , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 1 (2017)
- Konrad Kania, Tomasz Rymarczyk, METHODS FOR DETECTION ANALYSIS IN QUALITY CONTROL SYSTEM , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 3 (2018)
- Tomasz Rymarczyk, LEVEL SETS AND COMPUTATIONAL INTELLIGENCE ALGORITHMS TO MEDICAL IMAGE ANALYSIS IN E-MEDICUS SYSTEM , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 1 (2017)