LLM based expert AI agent for mission operation management
Article Sidebar
Open full text
Issue Vol. 15 No. 1 (2025)
-
Statistical reliability of decisions on controlled process faults
Yevhen Volodarskyi, Oleh Kozyr, Zygmunt Warsza5-9
-
Pulse chaotic generator based a classical Chua’s circuit
Volodymyr Rusyn, Andrii Samila, Bogdan Markovych, Aceng Sambas, Christos Skiadas, Milan Guzan10-14
-
Stability of metaheuristic PID controllers in photovoltaic dc microgrids
Elvin Yusubov, Lala Bekirova15-21
-
Integrating numerical simulation and experimental data for enhanced structural health monitoring of bridges
Om Narayan Singh, Kaushik Dey22-26
-
Application of multi-agent programming for modeling the viscosity state of mash in alcohol production
Larysa Gumeniuk, Ludmyla Markina, Viktor Satsyk, Pavlo Humeniuk, Anton Lashch27-32
-
A stochastic interval algebra for smart factory processes
Piotr Dziurzanski, Konrad Kabala, Agnieszka Konrad33-38
-
Advancements in solar panel maintenance: a review of IoT-integrated automatic dust cleaning systems
Balamurugan Rangaswamy, Ramasamy Nithya39-44
-
Modified cosine-quadratic reflectance model
Oleksandr Romanyuk, Volodymyr Lytvynenko, Yevhen Zavalniuk45-48
-
Comparative analysis of lithium-iron-phosphate and sodium-ion energy storage devices
Huthaifa A. Al_Issa, Mohamed Qawaqzeh, Lina Hani Hussienat, Ruslan Oksenych, Oleksandr Miroshnyk, Oleksandr Moroz, Iryna Trunova, Volodymyr Paziy, Serhii Halko, Taras Shchur49-54
-
Investigation of DC-AC converter with microcontroller control of inverter frequency
Anatolii Tkachuk, Mykola Polishchuk, Liliia Polishchuk, Serhii Kostiuchko, Serhii Hryniuk, Liudmyla Konkevych55-61
-
Mathematical apparatus for finding the optimal configuration secure communication network with a specified number of subscribers
Volodymyr Khoroshko, Yuliia Khokhlachova, Oleksandr Laptiev, Al-Dalvash Ablullah Fowad62-66
-
Critical cybersecurity aspects for improving enterprise digital infrastructure protection
Roman Kvуetnyy, Volodymyr Kotsiubynskyi, Serhii Husak, Yaroslav Movchan, Nataliia Dobrovolska, Sholpan Zhumagulova, Assel Aitkazina67-72
-
Modification of the Peterson algebraic decoder
Dmytro Mogylevych, Iryna Kononova, Liudmyla Pogrebniak, Kostiantyn Lytvyn, Igor Gyrenko73-78
-
Development of a model for calculating the dilution of precision coefficients of the global navigation system at a given point in space
Oleksandr Turovsky, Nazarii Blazhennyi, Roman Vozniak, Yana Horbachova, Kostiantyn Horbachov, Nataliia Rudenko79-87
-
LLM based expert AI agent for mission operation management
Sobhana Mummaneni, Syama Sameera Gudipati, Satwik Panda88-94
-
Review of operating systems used in unmanned aerial vehicles
Viktor Ivashko, Oleh Krulikovskyi, Serhii Haliuk, Andrii Samila95-100
-
Optimization of machine learning methods for de-anonymization in social networks
Nurzhigit Smailov, Fatima Uralova, Rashida Kadyrova, Raiymbek Magazov, Akezhan Sabibolda101-104
-
Robust deepfake detection using Long Short-Term Memory networks for video authentication
Ravi Kishan Surapaneni, Hameed Syed, Harshitha Kakarala, Venkata Sai Srikar Yaragudipati105-108
-
Regional trending topics mining from real time Twitter data for sentiment, context, network and temporal analysis
Mousumi Hasan, Mujiba Shaima, Quazi Saad ul Mosaher109-116
-
Model development to improve the predictive maintenance reliability of medical devices
Khalid Musallam Alahmadi, Essam Rabea Ibrahim Mahmoud, Fitrian Imaduddin117-124
-
Explainable artificial intelligence for detecting lung cancer
Vinod Kumar R S, Bushara A R, Abubeker K M, Smitha K M, Abini M A, Jubaira Mammoo, Bijesh Paul125-130
-
Design and implementation of a vein detection system for improved accuracy in blood sampling
Omar Boutalaka, Achraf Benba, Sara Sandabad131-134
-
Metrological feature for determining the concentration of cholesterol, triglycerides, and phospholipids for psoriasis detection
Ivan Diskovskyi, Yurii Kachurak, Orysya Syzon, Marta Kolishetska, Bogdan Pinaiev, Oksana Stoliarenko135-138
-
Development of a mobile application for testing fine motor skills disorders
Marko Andrushchenko, Karina Selivanova, Oleg Avrunin, Alla Kraievska, Orken Mamyrbayev, Kymbat Momynzhanova139-143
-
Artificial intelligence in education: ChatGPT-based simulations in teachers’ preparation
Marina Drushlyak, Tetiana Lukashova, Volodymyr Shamonia, Olena Semenikhina144-152
-
CKSD: Comprehensive Kurdish-Sorani database
Jihad Anwar Qadir, Samer Kais Jameel, Wshyar Omar Khudhur, Kamaran H. Manguri153-156
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
Mission operation management is the coordination and control of various activities related to the operation of a satellite. This critical function involves planning, monitoring, controlling, and coordinating all aspects of the mission, ensuring the spacecraft achieves its objectives. Current mission operation management faces limitations in terms of data transmission relying solely on ground control, manual analysis procedures, and not capitalizing on technology for optimizing routine mission operations. This research proposal aims to develop a Large Language Model (LLM) based Expert AI agent for performing mission operation management. The proposed LLM based AI assistant will perform tasks such as data analysis for pattern recognition, operational planning, and document summarization. The system is designed to operate offline, providing flexibility in deployment. Integrating AI with mission operation management can benefit mission controllers and engineers, scientists and researchers, space agencies and organizations. AI offers opportunities to reduce mission costs, improve success rates, and enhance the efficiency of space exploration programs.
Keywords:
References
[1] Ahn H. et al.: Deep generative models-based anomaly detection for spacecraft control systems. Sensors 20(7), 2020, 1991. DOI: https://doi.org/10.3390/s20071991
[2] Berquand A. et al.: Artificial intelligence for the early design phases of space missions. 2019 IEEE Aerospace Conference, IEEE, 2019. DOI: https://doi.org/10.1109/AERO.2019.8742082
[3] Chen B. et al.: Unleashing the potential of prompt engineering in large language models: a comprehensive review. arXiv, 2310.14735, 2023.
[4] Cuéllar S. et al.: Explainable anomaly detection in spacecraft telemetry. Engineering Applications of Artificial Intelligence 133, 2024, 108083. DOI: https://doi.org/10.1016/j.engappai.2024.108083
[5] Edge D. et al.: From local to global: A graph rag approach to query-focused summarization. arXiv, 2404.16130, 2024.
[6] Ferreira J. J., de Souza Monteiro M.: Do ML Experts Discuss Explainability for AI Systems? A discussion case in the industry for a domain-specific solution. arXiv, 2002.12450, 2020.
[7] Florin et al.: The power of noise: Redefining retrieval for rag systems. Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2024.
[8] Furano G. et al.: AI in space: Applications examples and challenges. IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). IEEE, 2020. DOI: https://doi.org/10.1109/DFT50435.2020.9250908
[9] Hei Z. et al.: Dr-rag: Applying dynamic document relevance to retrieval-augmented generation for question-answering. arXiv, 2406.07348, 2024.
[10] Herrmann L. et al.: Unmasking overestimation: a re-evaluation of deep anomaly detection in spacecraft telemetry. CEAS Space Journal 16(2), 2024, 225–237. DOI: https://doi.org/10.1007/s12567-023-00529-5
[11] Janjanam D. et al.: Design of an expert system architecture: An overview. Journal of Physics: Conference Series 1767(1), 2021. DOI: https://doi.org/10.1088/1742-6596/1767/1/012036
[12] Jin H. et al.: A comprehensive survey on process-oriented automatic text summarization with exploration of LLM-based methods. arXiv, 2403.02901, 2024.
[13] Josphineleela R. et al.: Exploration beyond boundaries: Ai-based advancements in rover robotics for lunar missions space like chandrayaan. Int. J. Intell. Syst. Appl. Eng 11(10s), 2023, 640–648.
[14] Ke Y. et al.: Development and Testing of Retrieval Augmented Generation in Large Language Models--A Case Study Report. arXiv, 2402.01733, 2024. DOI: https://doi.org/10.2139/ssrn.4719185
[15] Liu D. et al.: Fragment anomaly detection with prediction and statistical analysis for satellite telemetry. IEEE Access 5, 2017, 19269–19281. DOI: https://doi.org/10.1109/ACCESS.2017.2754447
[16] Liu S. et al.: Towards a robust retrieval-based summarization system. arXiv, 2403.19889, 2024.
[17] Muhammad H. H. et al.: A review on optimization-based automatic text summarization approach. IEEE Access 12, 2023, 4892–4909. DOI: https://doi.org/10.1109/ACCESS.2023.3348075
[18] Murdaca F. et al.: Knowledge-based information extraction from datasheets of space parts. 8th International Systems & Concurrent Engineering for Space Applications Conference 2018.
[19] Nalepa J. et al.: Evaluating algorithms for anomaly detection in satellite telemetry data. Acta Astronautica 198, 2022, 689–701. DOI: https://doi.org/10.1016/j.actaastro.2022.06.026
[20] Obied M. A. et al.: Deep clustering-based anomaly detection and health monitoring for satellite telemetry. Big Data and Cognitive Computing 7(1), 2023, 39. DOI: https://doi.org/10.3390/bdcc7010039
[21] O'Meara C. et al.: Applications of deep learning neural networks to satellite telemetry monitoring. 2018 Spaceops Conference. DOI: https://doi.org/10.2514/6.2018-2558
[22] Ostaszewski K. et al.: Pattern recognition in time series for space missions: A rosetta magnetic field case study. Acta Astronautica 168, 2020, 123–129. DOI: https://doi.org/10.1016/j.actaastro.2019.11.037
[23] Pilastre B. et al.: Anomaly detection in mixed telemetry data using a sparse representation and dictionary learning. Signal Processing 168, 2020, 107320. DOI: https://doi.org/10.1016/j.sigpro.2019.107320
[24] Purwar A.: Evaluating the efficacy of open-source llms in enterprise-specific rag systems: A comparative study of performance and scalability. arXiv, 2406.11424, 2024.
[25] Sahoo P. et al.: A systematic survey of prompt engineering in large language models: Techniques and applications. arXiv preprint arXiv, 2402.07927, 2024.
[26] Schefels C. et al.: To Catch Them All: A Generic Approach for Pattern Detection in Time Series Satellite Telemetry Data. 2021.
[27] Raj Mathav J. et al.: Fine tuning llm for enterprise: Practical guidelines and recommendations. arXiv, 2404.10779, 2024.
[28] Waisberg E. et al.: Generative pre-trained transformers (GPT) and space health: a potential frontier in astronaut health during exploration missions. Prehospital and Disaster Medicine 38(4), 2023, 532–536. DOI: https://doi.org/10.1017/S1049023X23005848
[29] Wang Y. et al.: A deep learning anomaly detection framework for satellite telemetry with fake anomalies. International Journal of Aerospace Engineering 1, 2022, 1676933. DOI: https://doi.org/10.1155/2022/1676933
[30] Zeng Z. et al.: Satellite telemetry data anomaly detection using causal network and feature-attention-based LSTM. IEEE Transactions on Instrumentation and Measurement 71, 2022, 1–21. DOI: https://doi.org/10.1109/TIM.2022.3151930
Article Details
Abstract views: 283

