[1] Azadi Kenari S. et al.: Thermal Flow Meter with Integrated Thermal Conductivity Sensor. Micromachines 14(7), 2023, 1280.
DOI: https://doi.org/10.3390/mi14071280
[2] Babak V., Kovtun S., Dekusha O.: Information-measuring technologies in the metrological support of heat flux measurements. CEUR Workshop Proceedings 2608, 2020, 379–393.
DOI: https://doi.org/10.32782/cmis/2608-29
[3] Barylo G. I. et al.: Signal transducer of functionally integrated thermomagnetic sensors. Visnyk NTUU KPI 76, 2019, 63–71.
DOI: https://doi.org/10.20535/RADAP.2019.76.63-71
[4] Bianchi L. et al.: Thermophysical and mechanical properties of biological tissues as a function of temperature: A systematic literature review. International Journal of Hyperthermia 39(1), 2022, 297–340.
DOI: https://doi.org/10.1080/02656736.2022.2028908
[5] Boyko O. et al.: Functionally integrated sensors of thermal quantities based on optocoupler. Proceeding of SPIE 10808, 2018, 306–311.
[6] Boyko O., Holyaka R., Hotra Z.: Functionally integrated sensors on magnetic and thermal methods combination basis. 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET). 2018, 697–701.
DOI: https://doi.org/10.1109/TCSET.2018.8336296
[7] Boyko O., Hotra O.: Improvement of dynamic characteristics of thermoresistive transducers with controlled heating. Przegląd Elektrotechniczny 5, 2019, 110–113
DOI: https://doi.org/10.15199/48.2019.05.27
[8] Boyko O. V., Hotra Z. Y.: Analysis and research of methods of linearization of the transfer function of precision semiconductor temperature sensors. Physics and Chemistry of Solid State 21(4), 2020, 737–742.
DOI: https://doi.org/10.15330/pcss.21.4.737-742
[9] Braissant O. et al.: Biomedical use of isothermal microcalorimeters. Sensors 10(10), 2010, 9369–9383.
DOI: https://doi.org/10.3390/s101009369
[10] Braissant O. et al.: Use of Isothermal Microcalorimetry to Monitor Microbial Activities. FEMS Microbiol. Lett 303, 2010, 1–8.
DOI: https://doi.org/10.1111/j.1574-6968.2009.01819.x
[11] Conway A. et al.: Accuracy and precision of zero-heat-flux temperature measurements with the 3M™ Bair Hugger™ Temperature Monitoring System: a systematic review and meta-analysis. Journal of Clinical Monitoring and Computing 35, 2021, 39–49.
DOI: https://doi.org/10.1007/s10877-020-00543-6
[12] Dekusha O. et al.: Information-Measuring Technologies in the Metrological Support of Thermal Conductivity Determination by Heat Flow Meter Apparatus. Systems, Decision and Control in Energy I Springer, Cham. 2020, 217–230.
DOI: https://doi.org/10.1007/978-3-030-48583-2_14
[13] Farkas G.: Temperature-Dependent Electrical Characteristics of Semiconductor Devices. Theory and Practice of Thermal Transient Testing of Electronic Components 2023, 139–169.
DOI: https://doi.org/10.1007/978-3-030-86174-2_4
[14] Feng J. et al.: Droplet-based differential microcalorimeter for real-time energy balance monitoring. Sensors and Actuators B: Chemical, 312, 2020, 127967.
DOI: https://doi.org/10.1016/j.snb.2020.127967
[15] Gros S. J. et al.: Personalized treatment response assessment for rare childhood tumors using microcalorimetry–exemplified by use of carbonic anhydrase IX and aquaporin 1 inhibitors. International journal of molecular sciences 20(20), 2019, 4984.
DOI: https://doi.org/10.3390/ijms20204984
[16] Hotra O., Boyko O., Zyska T.: Improvement of the operation rate of medical temperature measuring devices. Proc. SPIE 92914, 2014, 92910A.
DOI: https://doi.org/10.1117/12.2070167
[17] Hotra O., Boyko O.: Analogue linearization of transfer function of resistive temperature transducers. Proc. SPIE 9662, 2015, 966247.
DOI: https://doi.org/10.1117/12.2205449
[18] Hotra O., Boyko O.: Compensation bridge circuit with temperature-dependent voltage divider. Przegląd Elektrotechniczny 4a, 2012, 169–171.
[19] Hotra O., Dekusha O., Kovtun S.: Analysis of the Characteristics of Bimetallic and Semiconductor Heat Flux Sensors for In-Situ Measurements of Envelope Element Thermal Resistance. Measurement 2021, 109713.
DOI: https://doi.org/10.1016/j.measurement.2021.109713
[20] Khaw M. K., Mohd-Yasin F., Nguyen N. T.: Microcalorimeter: Design considerations, materials and examples. Microelectronic Engineering, 158, 2016, 107–117.
DOI: https://doi.org/10.1016/j.mee.2016.03.050
[21] Kuril A. K.: Differential scanning calorimetry: a powerful and versatile tool for analyzing proteins and peptides. J Pharm Res Int 36(7), 2024, 179–187.
DOI: https://doi.org/10.9734/jpri/2024/v36i77549
[22] Kuttner H. et al.: Microminiaturized thermistor arrays for temperature gradient, flow and perfusion measurements. Sensors and Actuators A: Physical 27(1-3), 1991, 641–645.
DOI: https://doi.org/10.1016/0924-4247(91)87064-A
[23] Lubbers B. et al.: Microfabricated calorimeters for thermometric enzyme linked immunosorbent assay in one-Nanoliter droplets. Biomedical Microdevices 21, 2019, 1–7.
DOI: https://doi.org/10.1007/s10544-019-0429-2
[24] Lundén O. P., Paldanius T.: Linearization of BJTs with logarithmic predistortion. IEEE Radio and Wireless Symposium (RWS) 2019, 1–3.
DOI: https://doi.org/10.1109/RWS.2019.8714520
[25] Magoń A., Pyda M.: Apparent heat capacity measurements and thermodynamic functions of d(−)-fructose by standard and temperature-modulated calorimetry. The Journal of Chemical Thermodynamics 56, 2013, 67–82.
DOI: https://doi.org/10.1016/j.jct.2012.07.003
[26] Martins E. et al.: Skin byproducts of reinhardtius hippoglossoides (Greenland Halibut) as ecosustainable source of marine collagen. Applied Sciences 12(21), 2022, 11282.
DOI: https://doi.org/10.3390/app122111282
[27] Ni S. et al.: A SiN microcalorimeter and a non-contact precision method of temperature calibration J. Microel. Syst. 29(5), 2020, 1103–1105.
DOI: https://doi.org/10.1109/JMEMS.2020.3008867
[28] Pertijs M. A., Makinwa K. A., Huijsing J. H.: A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1C from -55C to 125C. IEEE Journal of Solid-State Circuits 40(12), 2005.
DOI: https://doi.org/10.1109/JSSC.2005.858476
[29] Pollock D. D.: Thermocouples: theory and properties. Routledge 2018.
DOI: https://doi.org/10.1201/9780203735824
[30] Sundararajan S. et al.: BJT Based Translinear Implementation of an Evolutionary Optimised Non-Linear Function for Sensor Linearisation. IETE Journal of Research 70(6), 2023, 5905–5918.
DOI: https://doi.org/10.1080/03772063.2023.2273294
[31] Wang F., Han Y., Gu N.: Cell temperature measurement for biometabolism monitoring ACS Sens. 6(2), 2020, 290–302.
DOI: https://doi.org/10.1021/acssensors.0c01837
[32] Wang Y. et al.: Recent advances of microcalorimetry for studying cellular metabolic heat. TrAC Trends in Analytical Chemistry 143, 2021, 116353.
DOI: https://doi.org/10.1016/j.trac.2021.116353
[33] Zaporozhets A. et al.: Information Measurement System for Thermal Conductivity Studying. Advanced Energy Technologies and Systems I. Studies in Systems, Decision and Control 395, 2022.
DOI: https://doi.org/10.1007/978-3-030-85746-2_1
[34] Zhu H. et al.: The development of ultrasensitive microcalorimeters for bioanalysis and energy balance monitoring. Fundamental Research 4(6), 2023, 1625–1638.
DOI: https://doi.org/10.1016/j.fmre.2023.01.011