Design and implementation of a vein detection system for improved accuracy in blood sampling
Article Sidebar
Open full text
Issue Vol. 15 No. 1 (2025)
-
Statistical reliability of decisions on controlled process faults
Yevhen Volodarskyi, Oleh Kozyr, Zygmunt Warsza5-9
-
Pulse chaotic generator based a classical Chua’s circuit
Volodymyr Rusyn, Andrii Samila, Bogdan Markovych, Aceng Sambas, Christos Skiadas, Milan Guzan10-14
-
Stability of metaheuristic PID controllers in photovoltaic dc microgrids
Elvin Yusubov, Lala Bekirova15-21
-
Integrating numerical simulation and experimental data for enhanced structural health monitoring of bridges
Om Narayan Singh, Kaushik Dey22-26
-
Application of multi-agent programming for modeling the viscosity state of mash in alcohol production
Larysa Gumeniuk, Ludmyla Markina, Viktor Satsyk, Pavlo Humeniuk, Anton Lashch27-32
-
A stochastic interval algebra for smart factory processes
Piotr Dziurzanski, Konrad Kabala, Agnieszka Konrad33-38
-
Advancements in solar panel maintenance: a review of IoT-integrated automatic dust cleaning systems
Balamurugan Rangaswamy, Ramasamy Nithya39-44
-
Modified cosine-quadratic reflectance model
Oleksandr Romanyuk, Volodymyr Lytvynenko, Yevhen Zavalniuk45-48
-
Comparative analysis of lithium-iron-phosphate and sodium-ion energy storage devices
Huthaifa A. Al_Issa, Mohamed Qawaqzeh, Lina Hani Hussienat, Ruslan Oksenych, Oleksandr Miroshnyk, Oleksandr Moroz, Iryna Trunova, Volodymyr Paziy, Serhii Halko, Taras Shchur49-54
-
Investigation of DC-AC converter with microcontroller control of inverter frequency
Anatolii Tkachuk, Mykola Polishchuk, Liliia Polishchuk, Serhii Kostiuchko, Serhii Hryniuk, Liudmyla Konkevych55-61
-
Mathematical apparatus for finding the optimal configuration secure communication network with a specified number of subscribers
Volodymyr Khoroshko, Yuliia Khokhlachova, Oleksandr Laptiev, Al-Dalvash Ablullah Fowad62-66
-
Critical cybersecurity aspects for improving enterprise digital infrastructure protection
Roman Kvуetnyy, Volodymyr Kotsiubynskyi, Serhii Husak, Yaroslav Movchan, Nataliia Dobrovolska, Sholpan Zhumagulova, Assel Aitkazina67-72
-
Modification of the Peterson algebraic decoder
Dmytro Mogylevych, Iryna Kononova, Liudmyla Pogrebniak, Kostiantyn Lytvyn, Igor Gyrenko73-78
-
Development of a model for calculating the dilution of precision coefficients of the global navigation system at a given point in space
Oleksandr Turovsky, Nazarii Blazhennyi, Roman Vozniak, Yana Horbachova, Kostiantyn Horbachov, Nataliia Rudenko79-87
-
LLM based expert AI agent for mission operation management
Sobhana Mummaneni, Syama Sameera Gudipati, Satwik Panda88-94
-
Review of operating systems used in unmanned aerial vehicles
Viktor Ivashko, Oleh Krulikovskyi, Serhii Haliuk, Andrii Samila95-100
-
Optimization of machine learning methods for de-anonymization in social networks
Nurzhigit Smailov, Fatima Uralova, Rashida Kadyrova, Raiymbek Magazov, Akezhan Sabibolda101-104
-
Robust deepfake detection using Long Short-Term Memory networks for video authentication
Ravi Kishan Surapaneni, Hameed Syed, Harshitha Kakarala, Venkata Sai Srikar Yaragudipati105-108
-
Regional trending topics mining from real time Twitter data for sentiment, context, network and temporal analysis
Mousumi Hasan, Mujiba Shaima, Quazi Saad ul Mosaher109-116
-
Model development to improve the predictive maintenance reliability of medical devices
Khalid Musallam Alahmadi, Essam Rabea Ibrahim Mahmoud, Fitrian Imaduddin117-124
-
Explainable artificial intelligence for detecting lung cancer
Vinod Kumar R S, Bushara A R, Abubeker K M, Smitha K M, Abini M A, Jubaira Mammoo, Bijesh Paul125-130
-
Design and implementation of a vein detection system for improved accuracy in blood sampling
Omar Boutalaka, Achraf Benba, Sara Sandabad131-134
-
Metrological feature for determining the concentration of cholesterol, triglycerides, and phospholipids for psoriasis detection
Ivan Diskovskyi, Yurii Kachurak, Orysya Syzon, Marta Kolishetska, Bogdan Pinaiev, Oksana Stoliarenko135-138
-
Development of a mobile application for testing fine motor skills disorders
Marko Andrushchenko, Karina Selivanova, Oleg Avrunin, Alla Kraievska, Orken Mamyrbayev, Kymbat Momynzhanova139-143
-
Artificial intelligence in education: ChatGPT-based simulations in teachers’ preparation
Marina Drushlyak, Tetiana Lukashova, Volodymyr Shamonia, Olena Semenikhina144-152
-
CKSD: Comprehensive Kurdish-Sorani database
Jihad Anwar Qadir, Samer Kais Jameel, Wshyar Omar Khudhur, Kamaran H. Manguri153-156
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
Blood sampling is a routine procedure in medical diagnostics, yet precise vein visualization methods remain limited. This project introduces a system designed to improve vein detection during blood collection. It relies on Near-Infrared (NIR) light, which interacts with the skin and highlights veins by taking advantage of hemoglobin’s infrared absorption properties. Using a Raspberry Pi and an infrared camera, image acquisition and processing are handled through MATLAB and Python algorithms, which allow real-time visualization of veins. The system has been tested on a database of infrared images of hands and arms, effectively enhancing vein contrast in real time. The display is connected to the Raspberry Pi, giving medical staff a visual guide. This technology aims to streamline procedures for healthcare professionals, including doctors, nurses, and medical students, particularly in high-volume settings like labs and blood transfusion centers where vein visualization is critical to patient care.
Keywords:
References
[1] Aboshosha A. et al.: Image denoising based on spatial filters, an analytical study. International Conference on Computer Engineering & Systems. IEEE, 2009, 245–250. DOI: https://doi.org/10.1109/ICCES.2009.5384036
[2] Almajidy R. K. et al.: A newcomer's guide to functional near infrared spectroscopy experiments. IEEE Reviews in Biomedical Engineering 13, 2019, 292–308. DOI: https://doi.org/10.1109/RBME.2019.2944351
[3] Amritha P. P., Induja K., Rajeev K.: Active warden attack on steganography using Prewitt filter. International Conference on Soft Computing Systems. Springer, New Delhi 2016, 591–599. DOI: https://doi.org/10.1007/978-81-322-2674-1_56
[4] Aqrawi A. A., Boe T. H.: Improved fault segmentation using a dip guided and modified 3D Sobel filter. Society of Exploration Geophysicists Technical Program Expanded Abstracts 2011, 999–1003. DOI: https://doi.org/10.1190/1.3628241
[5] Brownrigg D. R.: The weighted median filter. Communications of the ACM 27(8), 1984, 807–818. DOI: https://doi.org/10.1145/358198.358222
[6] Di Franco M. et al.: Diastolic function abnormalities in rheumatoid arthritis. Evaluation by echo Doppler transmitral flow and pulmonary venous flow: relation with duration of disease. Annals of the Rheumatic Diseases 59(3), 2000, 227–229. DOI: https://doi.org/10.1136/ard.59.3.227
[7] Dumoulin C. L., Hart Jr. H. R.: Magnetic resonance angiography. Radiology 161(3), 1986, 717–720. DOI: https://doi.org/10.1148/radiology.161.3.3786721
[8] Gomes D. M.: Contrast enhancement in digital imaging using histogram equalization. Doctoral dissertation. Université Paris-Est, 2014.
[9] Gómez E. et al.: Diagnosis of thoracic outlet syndrome by angio-MRI. Radiologia 48(5), 2006, 295–300.
[10] Kong H., Akakin H. C., Sarma S. E.: A generalized Laplacian of Gaussian filter for blob detection and its applications. IEEE Transactions on Cybernetics 43(6), 2013, 1719–1733. DOI: https://doi.org/10.1109/TSMCB.2012.2228639
[11] Okhnyanskaya L. G. et al.: Assessment of the human regional cerebral blood flow by venous occlusion rheoplethysmoencephalography. Bulletin of Experimental Biology and Medicine 82(5), 1976, 1755–1758. DOI: https://doi.org/10.1007/BF00790408
[12] Thomas M. L.: Phlebography. Archives of Surgery 104(2), 1972, 145–151. DOI: https://doi.org/10.1001/archsurg.1972.04180020025005
[13] Upton E., Halfacree G.: Raspberry Pi User Guide. John Wiley & Sons, 2014.
[14] Zeman R. K. et al.: CT angiography. AJR. American Journal of Roentgenology 165(5), 1995, 1079–1088. DOI: https://doi.org/10.2214/ajr.165.5.7572481
Article Details
Abstract views: 182

