LOW COST SOLAR THERMOELECTRIC WATER FLOATING DEVICE TO SUPPLY MEASUREMENT PLATFORM


Abstract

This work presents the prototype of the solar - thermoelectric device, which can float on water surface. It produces electrical energy as a result of the Seebeck effect in a commercial, low-cost Peltier module. The main application of the device will be an autonomous and a floating measurement platform. An important advantage of the presented solution is the possibility to work alike at day, when a solar light heats the surface of the absorber, and at night, when the different of temperatures between air and water causes the heat flux and in an effect the electricity. The device is capable of working for many cloudy days and also in winter on very short days. The presented device is based on low-cost and widely available components.


Keywords

thermoelectric devices; solar power generation; energy conversion

Agarwal A., Lang J. H.: Foundations of Analog and Digital Electronic Circuits. Morgan Kaufmann Publishers (Elsevier), San Francisco 2005.

Cao Z., Koukharenko E., Tudor M. J., Torah R. N., Beeby S. P.: Flexible screen printed thermoelectric generator with enhanced processes and materials. Sensors and Actuators A: Physical 238/2016, 196–206, [DOI: 10.1016/j.sna.2015.12.016]. DOI: https://doi.org/10.1016/j.sna.2015.12.016

Dunham M. T., Barako M. T., LeBlanc S., Asheghi M., Chen B., Goodson K. E.: Power density optimization for micro thermoelectric generators. Energy 93/2015, 2006–2017, [DOI:10.1016/j.energy.2015.10.032]. DOI: https://doi.org/10.1016/j.energy.2015.10.032

Gao H. B., Huang G. H., Li H. J., Qu Z. G., Zhang Y. J.: Development of stove-powered thermoelectric generators: A review. Applied Thermal Engineering 96/2016, 297–310, [DOI: 10.1016/j.applthermaleng.2015.11.032]. DOI: https://doi.org/10.1016/j.applthermaleng.2015.11.032

Hasani M., Rahbar N.: Application of thermoelectric cooler as a power generator in waste heat recovery from a PEM fuel cell – An experimental study. International Journal of Hydrogen Energy 40/2015, 15040–15051, [DOI:10.1016/j.ijhydene.2015.09.023]. DOI: https://doi.org/10.1016/j.ijhydene.2015.09.023

Laughton M. A., Say M. G.: Electrical Engineer's Reference Book – Fourteenth edition. Butterworth International Edition 1990.

Liou K. N. (Ed.): An Introduction to Atmospheric Radiation. International Geophysics – Chapter 2: Solar Radiation at the Top of the Atmosphere. International Geophysics 84/2002, 37–64, [DOI: 10.1016/S0074-6142(02)80017-1]. DOI: https://doi.org/10.1016/S0074-6142(02)80017-1

Luque A., Hegedus S.: Handbook of Photovoltaic Science and Engineering (2nd edition), Wiley & Sons, 2010. DOI: https://doi.org/10.1002/9780470974704

Manikandan S., Kaushik S.C.: Energy and exergy analysis of solar heat pipe based annular thermoelectric generator system. Solar Energy 135/2016, 569–557, [DOI:10.1016/j.solener.2016.06.031]. DOI: https://doi.org/10.1016/j.solener.2016.06.031

Merienne R., Lynn J., McSweeney E., O'Shaughnessy S. M.: Thermal cycling of thermoelectric generators: The effect of heating rate. Applied Energy 237/2019, 671–681, [DOI:10.1016/j.apenergy.2019.01.041]. DOI: https://doi.org/10.1016/j.apenergy.2019.01.041

Morelli D. T.: Thermoelectric Materials. In: Kasap S., Capper P. (eds) Springer Handbook of Electronic and Photonic Materials. Springer Handbooks. Springer, Cham.

Nesarajah M., Frey G.: Thermoelectric Power Generation: Peltier Element versus Thermoelectric Generator (TEC vs. TEG). Proceedings of the 42nd Annual Conference of IEEE Industrial Electronics Society (IECON2016) 2016, 4252–4257, [DOI: 10.1109/IECON.2016.7793029]. DOI: https://doi.org/10.1109/IECON.2016.7793029

Nuwayhid R. Y., Rowe D. M., Min G.: Low cost stove-top thermoelectric generator for regions with unreliable electricity supply. Renewable Energy 28/2003, 205–222, [DOI 10.1016/S0960-1481(02)00024-1]. DOI: https://doi.org/10.1016/S0960-1481(02)00024-1

O’Brien R. C., Ambrosi R. M., Bannister N. P., Howe S. D., Atkinson H. V.: Safe radioisotope thermoelectric generators and heat sources for space applications. Journal of Nuclear Materials 377/2008, 506–521, [DOI: 10.1016/j.jnucmat.2008.04.009]. DOI: https://doi.org/10.1016/j.jnucmat.2008.04.009

Paraskevas A., Koutroulis E.: A simple maximum power point tracker for thermoelectric generators. Energy Conversion and Management 108/2016, 355–365, [DOI: 10.1016/j.enconman.2015.11.027]. DOI: https://doi.org/10.1016/j.enconman.2015.11.027

Saqr K. M., Musa M. N.: Critical review of thermoelectrics in modern power generation applications. Thermal Science 13(3), 2009, 165–174, [DOI: 10.2298/TSCI0903165S]. DOI: https://doi.org/10.2298/TSCI0903165S

Singh R., Tundee S., Akbarzadeh A.: Electric power generation from solar pond using combined thermosyphon and thermoelectric modules. Solar Energy 85/2011, 371–378, [DOI:10.1016/j.solener.2010.11.012]. DOI: https://doi.org/10.1016/j.solener.2010.11.012

Download

Published : 2019-12-15


Nowrot, A., Mikołajczyk, M., Manowska, A., Pielot, J., & Wojaczek, A. (2019). LOW COST SOLAR THERMOELECTRIC WATER FLOATING DEVICE TO SUPPLY MEASUREMENT PLATFORM. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 9(4), 78-82. https://doi.org/10.35784/iapgos.734

Andrzej Nowrot 
Silesian University of Technology  Poland
http://orcid.org/0000-0001-8977-0316
Monika Mikołajczyk 
Famur Institute Ltd  Poland
http://orcid.org/0000-0002-2843-5570
Anna Manowska  anna.manowska@polsl.pl
Silesian University of Technology  Poland
http://orcid.org/0000-0001-9300-215X
Joachim Pielot 
Silesian University of Technology  Poland
http://orcid.org/0000-0001-7679-2049
Antoni Wojaczek 
Silesian University of Technology  Poland
http://orcid.org/0000-0002-2256-0661